CONJUGACY CLASSES OF *n*-TUPLES IN LIE ALGEBRAS AND ALGEBRAIC GROUPS

R. W. RICHARDSON

Let G be a reductive algebraic group over an algebraically closed field F of characteristic zero and let L(G) be the Lie algebra of G. Then G acts on G by inner automorphisms and it acts on L(G) by the adjoint representation. By taking the diagonal actions, we get actions of G on the spaces of *n*-tuples G^n and $L(G)^n$. In this paper we will prove a number of geometric properties of the orbits of G on these spaces of *n*-tuples.

For n = 1 the situation has been studied in great detail (see [12, 30]). For example, if $x \in G$, then the orbit $G \cdot x$ is closed (resp. unstable) if and only if x is semisimple (resp. unipotent). Let x have Jordan decomposition x = su, with s semisimple and u unipotent. Then the stabilizer G_x is the intersection of G_s and G_u and $G \cdot s$ is the unique closed orbit in the closure of $G \cdot x$. Let V be the affine variety corresponding to the algebra $F[G]^G$ of regular class functions on G and let $\pi: G \to V$ be the morphism of affine varieties corresponding to the inclusion homomorphism $F[G]^G \to F[G]$. Then each fibre $\pi^{-1}(v), v \in V$, has codimension equal to the rank of G.

All of these results, plus a number of others, can be generalized to the action of G on *n*-tuples. For now, we will restrict our discussion to the action of G on G^n . Let $\mathbf{x} = (x_1, \dots, x_n) \in G^n$ and let $A(\mathbf{x})$ be the algebraic subgroup of G generated by $\{x_1, \ldots, x_n\}$. We say that x is a semisimple n-tuple (resp. unipotent *n*-tuple) if A(x) is a linearly reductive (resp. unipotent) algebraic group. We show that the orbit $G \cdot \mathbf{x}$ is closed (resp. unstable) if and only if \mathbf{x} is a semisimple (resp. unipotent) *n*-tuple. Let L be a Levi subroup of A(x). Then each x_i can be written uniquely in the form $x_i = y_i z_i$, with $y_i \in L$ and $z_i \in R_u(A(\mathbf{x}))$. Let $\mathbf{y} =$ (y_1, \ldots, y_n) and let $\mathbf{z} = (z_1, \ldots, z_n)$. The decomposition $\mathbf{x} = \mathbf{y} \cdot \mathbf{z}$ is called a Levi decomposition of x. (Such a decomposition of *n*-tuples is not unique.) We show that the stabilizer G_x is the intersection of G_y and G_z and that $G \cdot y$ is the unique closed orbit in the closure of $G \cdot x$. Let G^n/G be the affine variety corresponding to the algebra $F[G^n]^G$ of invariants and let $\pi: G^n \to G^n/G$ be the morphism corresponding to the inclusion homomorphism $F[G^n]^G \to F[G^n]$. Let $\mathbf{x} \in G^n$ be a semisimple *n*-tuple and let A be a maximal torus of the stabilizer $G_{\rm x}$. Then the dimension of the fibre $\pi^{-1}(\pi(\mathbf{x}))$ depends only on the G-conjugacy class of A and we give a precise formula for this dimension. (For n = 1, A is a maximal torus of G.) We also characterize the stable points of G^n and the smooth points of the quotient variety G^n/G .

Received June 19, 1987.