ON L^2 WELL POSEDNESS OF THE CAUCHY PROBLEM FOR SCHRÖDINGER TYPE EQUATIONS ON THE RIEMANNIAN MANIFOLD AND THE MASLOV THEORY

WATARU ICHINOSE

0. Introduction. Let M be a C^{∞} complete Riemannian manifold without boundary. M may be nonorientable. In the present paper we consider the Cauchy problem for Schrödinger type equations on M

(0.1)
$$\begin{cases} Lu(t,Q) \equiv \left[\frac{1}{i} \partial_t - \frac{1}{2} \Delta_M + \mathbf{B} + C(Q)\right] u(t,Q) = f(t,Q) \\ u(0,Q) = u^{(0)}(Q), \end{cases}$$
 $(Q \in M),$

where Δ_M denotes the Laplace-Beltrami operator on M, C(Q) a C^{∞} function on M and B belongs to the complexification of the space of all C^{∞} vector fields on M. Bu(t,Q) denotes the Lie derivative. We assume that

$$(0.2)$$
 M has a countable base.

There, a family of open sets $\{\mathcal{O}_i\}_{i=1}^{\infty}$ on M is called a countable base, if for an arbitrary open set \mathcal{O} on M and an arbitrary point $p \in \mathcal{O}$ there is an index j such that $p \in \mathcal{O}_i \subset \mathcal{O}$.

We know from [12] that the Cauchy problem (0.1) has an infinite propagation speed. So, it is impossible to consider the well posedness of (0.1) in $C^{\infty}(M)$ space. Therefore, in the present paper we shall consider the well posedness of (0.1) in the sense of L^2 . Let dV_M be the volume element associated with the Riemannian metric $g\langle \cdot, \cdot \rangle$ on M in a classical sense and we denote by $L^2 \equiv L^2(M)$ the set of all square integrable functions on M

$$\left\{f(Q); \int_{M} |f(Q)|^{2} dV_{M} < \infty\right\}.$$

The precise definitions of these will be given in section 1. We also denote the set of all L^2 valued continuous function in $t \in [0, T]$ by $\mathscr{E}_t^0([0, T]; L^2)$. The solution u(t, Q) of (0.1) is considered in a distribution sense (Definition 1.3). Then, we adopt the following definition as in [7].

Received April 6, 1987. Partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.