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I. Introduction

1. Introduction and main results. A smooth manifold M is called a CR
(Cauchy-Riemann) manifold if there is a subbundle z" (called the CR bundle) of
CTM, the complexified tangent bundle of M, satisfying [, ] c and
z’ /’= (0). If M and M’ are CR manifolds with CR bundles " and /", a
smooth mapping H: M -o M’ is called CR if for every p M,

(1.1) H’(0)
for all 0 Y, the fiber of at p. Here H’: CTM CTM’ is the differential
map of H. If M and M’ are three-dimensional, then necessarily, dimcy/’=
dimcY/"= 1.

Locally, near Po M and p H(po) M’, there exist smooth nonvanishing
vector fields L and L’, sections of Y/" and Y/", respectively. Condition (1.1) can
then be written

(1.2) H’(
for some smooth function X defined on M near P0.
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