THE Γ-FUNCTION IN THE ARITHMETIC OF FUNCTION FIELDS

DAVID GOSS

Introduction. Let $\Gamma(s)$ be Euler's gamma-function. Over the years this function, which arose out of a desire to have a continuous "factorial," has come to play a central role in the theory of numbers. It is of interest not only because for the Riemann zeta-function, $\zeta(s)$, we have

$$\Gamma(s)\zeta(s)=\int_0^\infty t^{s-1}(e^t-1)^{-1}\,dt,$$

but also for the properties that it possesses alone. Among these properties are a multiplication formula which describes $\Gamma(ns)$, $n \in \mathbb{N}$, and a functional equation which connects $\Gamma(s)$ with the trigonometric functions and the period 2π . Moreover, it has recently been found that the special values of $\Gamma(s)$ possess remarkable properties such as Deligne's algebraicity formula, which establishes that a certain product of special values generates an Abelian extension of $\mathbb{Q}(\zeta_p)$. A *p*-adic version of $\Gamma(s)$ has also been constructed by Morita and found to be related to Gauss sums (i.e., the result of Gross-Koblitz). For a good introduction into the early history of the gamma function the reader can consult ([D1]).

In the arithmetic theory of function fields over a finite field, L. Carlitz constructed a "factorial polynomial" Γ_i in order to be able to prove a version of the well-known theorem of von Staudt on Bernoulli numbers (see, for example, [G1]). This factorial has all the divisibility properties one would expect from the analogy to n!. By manipulating these values so as to make them *units* (à la Morita) at a prime w of the rational function field k, these values can also be interpolated *p*-adically to a continuous gamma function, $\Gamma_w(z)$, with values in the completion \mathbf{k}_w , of k at w (see [G3]).

This paper is devoted to an exposition of recent developments in the theory of these Γ -functions. The first of all these, due primarily to the fundamental work of Dinesh Thakur, but with a very important contribution by E.-U. Gekeler, establishes that $\Gamma_w(z)$ possesses all of the properties associated with the classical Γ -functions outside of the above relationship with $\zeta(s)$. Thus Thakur establishes that $\Gamma_w(z)$ has a multiplication formula (for *n* prime to the characteristic of the

Received November 13, 1986. Revision received March 16, 1987. Partially supported by NSF grant DMS-8521678.