THE Γ-FUNCTION IN THE ARITHMETIC OF FUNCTION FIELDS

DAVID GOSS

Introduction. Let $\Gamma(s)$ be Euler's gamma-function. Over the years this function, which arose out of a desire to have a continuous "factorial," has come to play a central role in the theory of numbers. It is of interest not only because for the Riemann zeta-function, $\zeta(s)$, we have

$$
\Gamma(s) \zeta(s)=\int_{0}^{\infty} t^{s-1}\left(e^{t}-1\right)^{-1} d t
$$

but also for the properties that it possesses alone. Among these properties are a multiplication formula which describes $\Gamma(n s), n \in \mathbb{N}$, and a functional equation which connects $\Gamma(s)$ with the trigonometric functions and the period 2π. Moreover, it has recently been found that the special values of $\Gamma(s)$ possess remarkable properties such as Deligne's algebraicity formula, which establishes that a certain product of special values generates an Abelian extension of $\mathbb{Q}\left(\zeta_{p}\right)$. A p-adic version of $\Gamma(s)$ has also been constructed by Morita and found to be related to Gauss sums (i.e., the result of Gross-Koblitz). For a good introduction into the early history of the gamma function the reader can consult ([D1]).

In the arithmetic theory of function fields over a finite field, L. Carlitz constructed a "factorial polynomial" Γ_{i} in order to be able to prove a version of the well-known theorem of von Staudt on Bernoulli numbers (see, for example, [G1]). This factorial has all the divisibility properties one would expect from the analogy to $n!$. By manipulating these values so as to make them units (à la Morita) at a prime w of the rational function field \mathbf{k}, these values can also be interpolated p-adically to a continuous gamma function, $\Gamma_{w}(z)$, with values in the completion \mathbf{k}_{w}, of \mathbf{k} at w (see [G3]).

This paper is devoted to an exposition of recent developments in the theory of these Γ-functions. The first of all these, due primarily to the fundamental work of Dinesh Thakur, but with a very important contribution by E.-U. Gekeler, establishes that $\Gamma_{w}(z)$ possesses all of the properties associated with the classical Γ-functions outside of the above relationship with $\zeta(s)$. Thus Thakur establishes that $\Gamma_{w}(z)$ has a multiplication formula (for n prime to the characteristic of the

Received November 13, 1986. Revision received March 16, 1987. Partially supported by NSF grant DMS-8521678.

