DEGENERATIONS OF THE HYPERBOLIC SPACE

MLADEN BESTVINA

1. Introduction. Let \mathbb{H}^n denote the *n*-dimensional hyperbolic space, i.e., the only complete, simply connected Riemannian manifold with constant sectional curvature -1. A model (the Poincaré model) for \mathbb{H}^n is the open unit ball

$$\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n; x_1^2 + x_2^2 + \dots + x_n^2 < 1\}$$

in \mathbb{R}^n with Riemannian metric given by $ds = dx/(1 - r^2)$ at a point at distance r from the origin. We never use this formula in the paper.

Denote by $\operatorname{Isom}_+ \mathbb{H}^n$ the Lie group of orientation-preserving isometries of \mathbb{H}^n (it is isomorphic to $\operatorname{SO}_0^+(n, 1)$). Let G be a (discrete) group. Any discrete and faithful representation $\alpha: G \to \operatorname{Isom}_+ \mathbb{H}^n$ gives rise to a hyperbolic manifold $\mathbb{H}^n/\alpha(G)$ and an isomorphism $G \approx \pi_1(\mathbb{H}^n/\alpha(G))$ that is well defined up to conjugation (the isomorphism depends on the choice of basepoint). If $\beta: G \to$ $\operatorname{Isom}_+ \mathbb{H}^n$ is a conjugate of α , i.e., for some $h \in \operatorname{Isom}_+ \mathbb{H}^n \beta(g) = h^{-1}\alpha(g)h$ $(g \in G)$, then the hyperbolic manifolds $\mathbb{H}^n/\alpha(G)$ and $\mathbb{H}^n/\beta(G)$ are isometric, and the isometry induces an isomorphism on fundamental groups that commutes (up to conjugation) with the preferred isomorphisms $G \approx \pi_1(\mathbb{H}^n/\alpha(G))$ and $G \approx \pi_1(\mathbb{H}^n/\beta(G))$. Therefore, the set $\mathscr{H}^n(G)$ of "homotopy *n*-hyperbolic structures" on G can be defined as

(1) the set of conjugacy classes of discrete and faithful representations $G \rightarrow \text{Isom}_+ \mathbb{H}^n$; or

(2) the set of equivalence classes of pairs (M, ϕ) , where M is a hyperbolic *n*-manifold and ϕ is an isomorphism between G and $\pi_1(M)$ defined up to conjugation (pairs (M, ϕ) and (N, Ψ) are equivalent if there is an isometry $f: M \to N$ such that the diagram

commutes up to conjugation); or

(3) the set of equivalence classes of pairs (M, ϕ) , where M is a hyperbolic *n*-manifold and ϕ is a homotopy equivalence $K(G, 1) \rightarrow M$ (pairs (M, ϕ) and

Received March 21, 1987. Supported in part by NSF Grant DMS 8513582.