ON RATIONALLY DETERMINED LINE BUNDLES ON A FAMILY OF PROJECTIVE CURVES WITH GENERAL MODULI

CIRO CILIBERTO

1. Let g, r, d be positive integers and let $\rho = \rho(g, r, d) = g - (r + 1)(g + r - d)$. It is well known that if and only if either $\rho \ge 0$ and $r \ge 3$ or g = 3, r = 2, and d = 4, there is a unique irreducible component \mathscr{H} of the Hilbert scheme of curves of degree d and arithmetic genus g in \mathbb{P}^r such that

- (i) there exists a nonempty, maximal Zariski open subset ℋ₀ of ℋ such that all closed points of ℋ₀ are smooth points for the Hilbert scheme and correspond to smooth, irreducible, nondegenerate curves in P^r;
- (ii) the natural map $\mathscr{H}_0 \to \mathscr{M}_g$ of \mathscr{H}_0 into the moduli space of curves of genus g is dominant.

 \mathcal{H} is said to be a component with general moduli of the Hilbert scheme.

If $\pi: \mathscr{F} \to \mathscr{H}_0$ is the universal family over \mathscr{H}_0 , both \mathscr{F} and \mathscr{H}_0 are smooth schemes over the base field, which we shall assume to be the complex field; furthermore, the morphism π is smooth also. Let U be any nonempty Zariski open subset of \mathscr{H}_0 and let $\pi_U: \mathscr{F}_U \to U$ be the restriction of the universal family over U. The cokernel of the group morphism $\pi_U^*: \operatorname{Pic}(U) \to \operatorname{Pic}(\mathscr{F}_U)$ will be denoted by $\mathscr{R}(\mathscr{F}_U)$ and called the group of rationally determined line bundles on the curves of the family $\pi_U: \mathscr{F}_U \to U$. We notice that on \mathscr{F} one has two naturally defined line bundles, namely ω , the relative canonical bundle of $\pi:$ $\mathscr{F} \to \mathscr{H}_0$, and h, the hyperplane bundle corresponding to the morphism $\mathscr{F} \hookrightarrow$ $\mathbb{P}^r \times \mathscr{H}_0$. We shall again denote by ω and h, if no confusion arises, the images of these line bundles in $\mathscr{R}(\mathscr{F})$ and in $\mathscr{R}(\mathscr{F}_U)$ for any open subset $U \subset \mathscr{H}_0$ via the natural restriction morphism $r_U: \mathscr{R}(\mathscr{F}) \to \mathscr{R}(\mathscr{F}_U)$.

The purpose of this paper is to prove

THEOREM (1.1). Let $r \ge 3$, $g \ge 3$, and $\rho \ge 2$. Then for any nonempty Zariski open subset $U \subseteq \mathscr{H}_0$, $\mathscr{R}(\mathscr{F}_U)$ is generated by ω and h.

What we shall actually prove is a slightly different assertion, equivalent to Theorem (1.1), which we are now going to state: Let \mathscr{L} be any element in $\operatorname{Pic}(\mathscr{F})$, and let γ be a closed point in \mathscr{H}_0 corresponding to a smooth, complete curve Γ of degree d and genus g in \mathbb{P}' , the fibre of π over γ . It is clear that \mathscr{L}_{Γ} , the restriction of \mathscr{L} to Γ , only depends on the image of \mathscr{L} in $\mathscr{R}(\mathscr{F})$. Conversely, we have

LEMMA (1.2). Let $\mathscr{L}, \mathscr{L}' \in \operatorname{Pic}(\mathscr{F})$. If for every closed point $\gamma \in \mathscr{H}_0$ one has $\mathscr{L}_{\Gamma} \simeq \mathscr{L}_{\Gamma}$, then the images of \mathscr{L} and \mathscr{L}' in $\mathscr{R}(\mathscr{F})$ coincide.

Received October 24, 1986. Revision received May 1, 1987. The author has been supported by C.N.R. and M.P.I.