ON RATIONALLY DETERMINED LINE BUNDLES ON A FAMILY OF PROJECTIVE CURVES WITH GENERAL MODULI

CIRO CILIBERTO

1. Let g, r, d be positive integers and let $\rho=\rho(g, r, d)=g-(r+1)(g+r$ $-d)$. It is well known that if and only if either $\rho \geqslant 0$ and $r \geqslant 3$ or $g=3, r=2$, and $d=4$, there is a unique irreducible component \mathscr{H} of the Hilbert scheme of curves of degree d and arithmetic genus g in \mathbb{P}^{r} such that
(i) there exists a nonempty, maximal Zariski open subset \mathscr{H}_{0} of \mathscr{H} such that all closed points of \mathscr{H}_{0} are smooth points for the Hilbert scheme and correspond to smooth, irreducible, nondegenerate curves in \mathbb{P}^{r};
(ii) the natural map $\mathscr{H}_{0} \rightarrow \mathscr{M}_{g}$ of \mathscr{H}_{0} into the moduli space of curves of genus g is dominant.
\mathscr{H} is said to be a component with general moduli of the Hilbert scheme.
If $\pi: \mathscr{F} \rightarrow \mathscr{H}_{0}$ is the universal family over \mathscr{H}_{0}, both \mathscr{F} and \mathscr{H}_{0} are smooth schemes over the base field, which we shall assume to be the complex field; furthermore, the morphism π is smooth also. Let U be any nonempty Zariski open subset of \mathscr{H}_{0} and let $\pi_{U}: \mathscr{F}_{U} \rightarrow U$ be the restriction of the universal family over U. The cokernel of the group morphism $\pi_{U}^{*}: \operatorname{Pic}(U) \rightarrow \operatorname{Pic}\left(\mathscr{F}_{U}\right)$ will be denoted by $\mathscr{R}\left(\mathscr{F}_{U}\right)$ and called the group of rationally determined line bundles on the curves of the family $\pi_{U}: \mathscr{F}_{U} \rightarrow U$. We notice that on \mathscr{F} one has two naturally defined line bundles, namely ω, the relative canonical bundle of π : $\mathscr{F} \rightarrow \mathscr{H}_{0}$, and h, the hyperplane bundle corresponding to the morphism $\mathscr{F} \hookrightarrow$ $\mathbb{P}^{r} \times \mathscr{H}_{0}$. We shall again denote by ω and h, if no confusion arises, the images of these line bundles in $\mathscr{R}(\mathscr{F})$ and in $\mathscr{R}\left(\mathscr{F}_{U}\right)$ for any open subset $U \subset \mathscr{H}_{0}$ via the natural restriction morphism $r_{U}: \mathscr{R}(\mathscr{F}) \rightarrow \mathscr{R}\left(\mathscr{F}_{U}\right)$.

The purpose of this paper is to prove
Theorem (1.1). Let $r \geqslant 3, g \geqslant 3$, and $\rho \geqslant 2$. Then for any nonempty Zariski open subset $U \subseteq \mathscr{H}_{0}, \mathscr{R}\left(\mathscr{F}_{U}\right)$ is generated by ω and h.

What we shall actually prove is a slightly different assertion, equivalent to Theorem (1.1), which we are now going to state: Let \mathscr{L} be any element in $\operatorname{Pic}(\mathscr{F})$, and let γ be a closed point in \mathscr{H}_{0} corresponding to a smooth, complete curve Γ of degree d and genus g in \mathbb{P}^{r}, the fibre of π over γ. It is clear that \mathscr{L}_{Γ}, the restriction of \mathscr{L} to Γ, only depends on the image of \mathscr{L} in $\mathscr{R}(\mathscr{F})$. Conversely, we have

Lemma (1.2). Let $\mathscr{L}, \mathscr{L}^{\prime} \in \operatorname{Pic}(\mathscr{F})$. If for every closed point $\gamma \in \mathscr{H}_{0}$ one has $\mathscr{L}_{\Gamma} \simeq \mathscr{L}_{\Gamma}$, then the images of \mathscr{L} and \mathscr{L}^{\prime} in $\mathscr{R}(\mathscr{F})$ coincide .

Received October 24, 1986. Revision received May 1, 1987. The author has been supported by C.N.R. and M.P.I.

