ON HILBERT MODULAR FORMS OF HALF-INTEGRAL WEIGHT

GORO SHIMURA

There are two main themes in this paper: (i) the relation between the Fourier coefficients of a Hilbert modular form of half-integral weight and those of a form of integral weight; (ii) the arithmeticity of critical values of a zeta function attached to two forms of half-integral weight. Our results will generalize those in the elliptic modular case obtained in our previous papers. To describe them more explicitly, let F, o, b, a, and f denote throughout the paper a totally real algebraic number field of finite degree, the maximal order of F, the different of F over \mathbf{Q} , the set of archimedean primes of F, and the set of nonarchimedean primes of F, respectively. We put $G = SL_2(F)$ and let G act on \mathcal{H}^a as usual, where

$$\mathscr{H}=\big\{z\in\mathbf{C}|\mathrm{Im}(z)>0\big\}.$$

For two fractional ideals x and y of F such that $xy \subset o$, we put

$$\Gamma[\mathfrak{x},\mathfrak{y}] = \big\{ \gamma \in G | a_{\gamma} \in \mathfrak{o}, \, b_{\gamma} \in \mathfrak{x}, \, c_{\gamma} \in \mathfrak{y}, \, d_{\gamma} \in \mathfrak{o} \big\},\,$$

where a_{γ} , b_{γ} , c_{γ} , and d_{γ} are the entries of γ in the standard order. By a *half-integral weight* we mean an element k of $(1/2)\mathbb{Z}^a$ such that $2k_v$ is odd for all $v \in \mathbf{a}$; naturally an *integral weight* is an element of \mathbb{Z}^a . For $\gamma \in G$, $z \in \mathcal{H}^a$, and a weight k, we define a factor of automorphy J_k by

$$J_{k}(\gamma, z) = \begin{cases} \prod_{v \in \mathbf{a}} (c_{v}z_{v} + d_{v})^{k_{v}} & (k \in \mathbf{Z}^{\mathbf{a}}), \\ h(\gamma, z) \prod_{v \in \mathbf{a}} (c_{v}z_{v} + d_{v})^{k_{v}-(1/2)} & (k \notin \mathbf{Z}^{\mathbf{a}}), \end{cases}$$

where $(c, d) = (c_{\gamma}, d_{\gamma})$, and $h(\gamma, z)$ is a factor of weight 1/2 introduced in [S8]. It should be noted that $h(\gamma, z)$ is defined only for γ in a certain subset of G, but at least for $\gamma \in \Gamma[2b^{-1}, 2b]$. Then we denote by \mathcal{M}_k the set of all holomorphic modular forms on $\mathcal{H}^{\mathbf{a}}$ of weight k with respect to congruence subgroups of G, defined as usual relative to J_k .

Let us now assume k to be half-integral and put $m_v = k_v - (1/2)$ for $v \in \mathbf{a}$. In parallel to the elliptic modular case, we choose a "level" which is an integral

Received November 14, 1986. Research supported by NSF Grant DMS-8401291.