THE POISSON BRACKET ON THE SPACE OF MEASURED FOLIATIONS ON A SURFACE

ALBERT FATHI

W. Thurston showed that if M is a closed oriented and connected surface, it is possible to define a piecewise symplectic structure on $\mathscr{M} \mathscr{F}(M)$ the space of classes of measured foliations up to Whitehead moves and isotopy-see the work of A. Papadopoulos [Pa1] and [Pa2]. There are natural functions defined on $\mathscr{M} \mathscr{F}(M)$, if θ is an unoriented homotopy class of closed curves and $\mathscr{F} \in$ $\mathscr{M} \mathscr{F}(M)$ the number $i(\theta, \mathscr{F})$ is defined as the minimum of the total transverse measure of a curve representing θ with respect to a foliation representing \mathscr{F}. In the case $\theta \in \mathscr{S}(M)$, the set of isotopy classes of simple closed curves, the properties of this intersection number are in [FLP]. It is possible to generalize the properties to a nonsimple θ; for example, it is possible to show that the function $\theta \mapsto i(\theta, \mathscr{F})$ is continuous-see [Bo] for proofs in terms of geodesic laminations. We denote by $\tilde{\theta}$ the function $\mathscr{M} \mathscr{F}(M) \rightarrow \mathbb{R}_{+}, \mathscr{F} \mapsto i(\theta, \mathscr{F})$.

In [Pa1] it is shown that if $\gamma \in \mathscr{S}(M)$, there exists a Hamiltonian flow $\lambda \in \mathbb{R} \mapsto H_{\gamma}^{\lambda}$ that is defined on the open set $\{\mathscr{F} \mid i(\gamma, \mathscr{F}) \neq 0\}$, whose Hamiltonian is precisely $\tilde{\gamma}$. It is easy to remark that $H_{\gamma}^{i(\gamma, \mathscr{F})}(\mathscr{F})$ is the image of \mathscr{F} under the positive Dehn twist defined by γ.

Our goal is to compute the Poisson bracket $\{\tilde{\gamma}, \tilde{\delta}\}$ for $\gamma, \delta \in \mathscr{S}(M)$. Recall that $\{\tilde{\gamma}, \tilde{\delta}\}$ is a function which is defined as the derivative at 0 of $\lambda \mapsto$ $-\tilde{\delta}\left(H_{\gamma}^{\lambda}(\mathscr{F})\right)=-i\left(\delta, H_{\gamma}^{\lambda}(\mathscr{F})\right)$.

Following W. Goldman [Go], for each pair $\gamma, \delta \in \mathscr{S}(M)$ we introduce $i(\gamma, \delta)$ pairs of homotopy classes of unoriented closed curves on M, namely $\left\{\left(\theta_{j \gamma \delta}^{+}, \theta_{j \gamma \delta}^{-}\right) \mid j=1, \ldots, i(\gamma, \delta)\right\}$. To define these curves, choose representatives $c \in \gamma$ and $d \in \delta$ such that $c \cap d$ has exactly $i(\gamma, \delta)$ points and the curves are transverse at all points of intersection. Call $p_{1}, \ldots, p_{i(\gamma, \delta)}$ the points in $c \cap d$. For each $j=1, \ldots, i(\gamma, \delta)$ we define two curves $t_{j \gamma \delta}^{+}$and $t_{j \gamma \delta}^{-}$in the following way: we choose an orientation on c and an orientation on d such that the tangent vector of c at p_{j} followed by the tangent vector of d at p_{j} gives the orientation of M at p_{j}; consider c (resp. d) as a curve $c_{p_{j}}$ (resp. $d_{p_{j}}$) pointed at p_{j}; and define $t_{j \gamma \delta}^{+}$(resp. $t_{j \gamma \delta}^{-}$) as the curve $c_{p_{j}} d_{p_{j}}\left(\right.$ resp. $\left.c_{p_{j}} d_{p_{j}}^{-1}\right)$. Remark that if we change the orientation on c, we must also change it on d, and this replaces $c_{p_{j}} d_{p_{j}}$ by $c_{p_{j}}^{-1} d_{p_{j}}^{-1}=d_{p_{j}}\left(c_{p_{j}} d_{p_{j}}\right)^{-1} d_{p_{j}}^{-1}$, which is freely homotopic to $t_{j \gamma \delta}^{+}$as unoriented curve. If we take other representatives $c^{\prime} \in \gamma$ and $d^{\prime} \in \delta$ such that $c^{\prime} \cap d^{\prime}$ consists of $i(\gamma, \delta)$ points, then, by [FLP, Exposé 3, Proposition 12, page 48], there exists a diffeomorphism isotopic to the identity which sends c to c^{\prime} and d to d^{\prime}.

