VANISHING CYCLES, RAMIFICATION OF VALUATIONS, AND CLASS FIELD THEORY

KAZUYA KATO with the collaboration of Takeshi Saito

Contents

- §1. Integration on totally ordered Q-vector spaces.
- §2. Abstract theory of upper and lower ramification groups.
- §3. Valuation rings.
- §4. Two dimensional local class field theory, the theorem of Hasse-Arf.
- §5. Two dimensional normal local rings with reduced special fibers.
- §6. The dimension of the space of vanishing cycles.

Introduction. The purpose of this paper is to give a generalization of a theorem of Deligne on vanishing cycles in relative dimension one

$$\dim(\psi_x^1(u_!\mathscr{F})) = \varphi(\eta) - \varphi(s)$$

([9], Theorem 5.1.1; the notations will be reviewed below). In this theorem, the sheaf \mathscr{F} is assumed to be unramified at the generic point of the special fiber. We consider in this paper the ramified case, relating it to a ramification theory of valuation rings of rank two, and to the two dimensional local class field theory ([6], [12], [20]).

To be precise, let O_k be an excellent henselian discrete valuation ring with field of fractions k and with algebraically closed residue field F, and let A be the henselization $O_k\{T\}$ of the local ring of the polynomial ring $O_k[T]$ at the maximal ideal $\operatorname{Ker}(O_k[T] \to F; T \mapsto 0)$. Let $u: U \to \operatorname{Spec}(A \otimes_{O_k} k)$ be a nonempty open subscheme, Λ a field of positive characteristic such that $\operatorname{char}(\Lambda) \neq$ $\operatorname{char}(F)$, and let \mathscr{F} be a Λ -module on the étale site $U_{\acute{e}t}$ which is locally constant of finite rank. We denote the algebraic closure of k by \overline{k} , the closed point of $\operatorname{Spec}(A)$ by x, the generic point of $\operatorname{Spec}(A \otimes_{O_k} F)$ by \mathfrak{p} , the residue field of \mathfrak{p} by $\kappa(\mathfrak{p})$, and the local ring of A at \mathfrak{p} by $A_{\mathfrak{p}}$. Then, the space of vanishing cycles

$$\psi_{x}^{q}(u_{!}\mathscr{F}) = H_{\text{\'et}}^{q}\left(\operatorname{Spec}\left(A \otimes_{O_{k}} \overline{k}\right), u_{!}\mathscr{F}\right) \qquad (q \ge 0)$$

is zero for $q \ge 2$, and is computed easily for q = 0. The theorem of Deligne gives the dimension of $\psi_x^1(u, \mathcal{F})$ assuming that \mathcal{F} is unramified with respect to the

Received January 3, 1986. Revision received October 3, 1986.