ABELIAN VARIETIES WITH SEVERAL PRINCIPAL POLARIZATIONS

HERBERT LANGE

0. Introduction. Let J denote the Jacobian variety of a smooth projective curve C and let θ denote the principal polarization associated to the Theta divisor of C in J. Then Torelli's theorem says that the pair (J, θ) determines the curve C up to isomorphism. A natural question would be: does J alone determine the curve C ? This is not true in general. However there seem to be not many counterexamples in the literature, all of them in genus 2 . The first examples are due to Humbert (cf. [5]), who studied abelian surfaces with real multiplication. Others are due to Hayashida and Nishi (cf. [3], [4]) who studied products of elliptic curves. In both cases the fact that a principally polarized abelian surface is either a Jacobian or a product of elliptic curves is heavily used.

In arbitrary dimensions there is only the general theorem of Narasimhan and Nori (cf. [10]) stating that any abelian variety admits only a finite number of principal polarizations up to isomorphism. There remains the problem: What is the actual number if isomorphism classes of principal polarizations of a given abelian variety? It is the aim of this paper to give a translation of this question into a number theoretical one. This gives a method for computing this number in many cases of which we will give several examples.

To state the results, let A be an abelian variety over the field of complex numbers. Let $\Pi(A)$ denote the set of isomorphism classes of principal polarizations of A and $\pi(A)$ the number of elements of $\Pi(A)$. In section 1 we show (cf. Theorem 1.5) that if A admits a principal polarization L_{0}, then L_{0} induces a bijection between $\Pi(A)$ and the set of equivalence classes of totally positive symmetric (with respect to L_{0}) automorphisms of A modulo the natural action of $\operatorname{Aut}(A)$.

In section 2 we give a criterion (cf. Lemma 2.1 and Remark 2.2) for an abelian variety with real multiplication to admit a principal polarization, which easily can be applied to give examples for such varieties.

Hence Theorem 1.5 may be applied to give examples in the real multiplication case. In section 3 the number $\pi(A)$ is computed a little more in this case. It is shown that $\pi(A)$ is closely related to the class number h of the corresponding totally real field k. To be more precise, if $\operatorname{End}(A)$ equals the principal order in K, then $\pi(A)=h^{+} / h$, where h^{+}denotes the narrow class number on K (cf. Theorem 3.1). As a corollary from this and Dirichlet's theorem we get $\pi(A) \leqslant$

[^0]
[^0]: Received November 5, 1986. Revision received January 10, 1987. Research supported in part by NSF Grant 8120790.

