THE HODGE STRUCTURES ON THE INTERSECTION HOMOLOGY OF VARIETIES WITH ISOLATED SINGULARITIES

STEVEN ZUCKER

"Most of the difficulties that one has in understanding mathematics are psychological in nature."

P. Deligne

Introduction. Let X be an n-dimensional variety with isolated singularities Σ . For such spaces, one can write, as is well known, their (middle) intersection homology as

$$IH^{i}(X) \simeq \begin{cases} H^{i}(X - \Sigma) & \text{if } i < n, \\ H^{i}(X) & \text{if } i > n, \\ \text{im}\{H^{n}(X) \to H^{n}(X - \Sigma)\} & \text{if } i = n. \end{cases}$$

By [4], the groups on the right-hand side are endowed with mixed Hodge structures; it is known that these mixed Hodge structures are, in fact, pure [8: $\S 3$], [11: (1.14)]. Thus, we obtain in this way Hodge structures on IH'(X), as anticipated.* These are clearly the "right" Hodge structures, for one certainly wants

$$H^{i}(X) \rightarrow IH^{i}(X) \rightarrow H^{i}(X - \Sigma)$$

to be morphisms of mixed Hodge structures. We shall refer to them as the canonical Hodge structures on the intersection homology of a variety with isolated singularities. A Hodge complex, in the sense of [4], for these is given in [6].

On the other hand, Hodge structures for intersection homology have been produced, in certain cases, by the "traditional" method, via an isomorphism

$$IH^{\boldsymbol{\cdot}}(X)\simeq H^{\boldsymbol{\cdot}}_{(2)}(X-\Sigma)$$

with L_2 cohomology with respect to a suitable Kähler metric on $X - \Sigma$ [2, 9, 10, 12]. A priori, even their Hodge numbers could be different from those of the canonical Hodge structures. In this article, we prove that these L_2 cohomology

Received April 28, 1986. Revision received October 24, 1986. Supported in part by the National Science Foundation, through grant DMS-8501005.

^{*}For a recent general construction, see [16].