A THEOREM ON REFINING DIVISION ORDERS BY THE REVERSE LEXICOGRAPHIC ORDER

DAVID BAYER AND MICHAEL STILLMAN

Let k be an infinite field of any characteristic, and let $S = k[x_1, ..., x_n]$ be a graded polynomial ring, where each x_i has degree one. Let $I \subset S$ be a homogeneous ideal.

Let S_d denote the finite vector space of all homogeneous, degree d polynomials in S, so $S = S_0 \oplus S_1 \oplus \cdots \oplus S_d \oplus \cdots$. Writing I in the same manner as $I = I_0 \oplus I_1 \oplus \cdots \oplus I_d \oplus \cdots$, we have $I_d \subset S_d$ for each d. An order > on the monomials of S_d for each d is compatible with the monoid structure on the monomials of S if whenever $x^A > x^B$ for two monomials x^A , x^B , then $x^C x^A > x^C x^B$ for all monomials x^C . We shall only consider orders satisfying this compatibility condition.

If an order > is a strict order on the monomials of each degree, one can use > in applying the division algorithm to constructing a standard (Gröbner) basis for *I*. The standard basis for *I*, and its properties, will vary in a crucial way with the choice of order >. The subject of computing standard or Gröbner bases has a long history; see [Bay85] for a recent survey.

One can generalize the necessary definitions to nonstrict orders >, which fail to distinguish between all monomials of a given degree: For each polynomial $f \in S$, define in(f) to be the sum of those terms cx^A of f which are greatest with respect to the order >. Define in(I) to be the ideal generated by $\{in(f)|f \in I\}$. Define f_1, \ldots, f_r to be a standard basis for I with respect to the order > if $in(f_1), \ldots, in(f_r)$ generate the ideal in(I). If > is a strict order, in(I) will be a monomial ideal; if > is not strict, in(I) may fail to be a monomial ideal.

A nonstrict order $>_1$ can be refined to a strict order by breaking any ties with a fixed strict order $>_2$; the resulting order $>_3$ is then a compatible order, so the usual division algorithm can be applied to compute standard bases with respect to $>_3$. Let in_1, in_2, in_3 correspond to $>_1, >_2, >_3$. We shall see that $in_3(I) = in_2(in_1(I))$, so a standard basis with respect to $>_3$ is already a standard basis with respect to $>_1$. Call $>_3$ the refinement of $>_1$ by $>_2$. Thus, refinements provide a mechanism for computing with nonstrict orders. This has been observed for example in [MoMö83], where in the affine setting, homogenizing bases (in the above sense, standard bases with respect to the total degree order) are computed via standard bases with respect to a strict order.

We recall two frequently used strict orders: The lexicographic order is defined by $x^A > x^B$ if the first nonzero entry in A-B is positive. The reverse lexico-

Received October 23, 1986.