A THEOREM ON REFINING DIVISION ORDERS BY THE REVERSE LEXICOGRAPHIC ORDER

DAVID BAYER and MICHAEL STILLMAN

Let k be an infinite field of any characteristic, and let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be a graded polynomial ring, where each x_{i} has degree one. Let $I \subset S$ be a homogeneous ideal.

Let S_{d} denote the finite vector space of all homogeneous, degree d polynomials in S, so $S=S_{0} \oplus S_{1} \oplus \cdots \oplus S_{d} \oplus \cdots$. Writing I in the same manner as $I=I_{0} \oplus I_{1} \oplus \cdots \oplus I_{d} \oplus \cdots$, we have $I_{d} \subset S_{d}$ for each d. An order $>$ on the monomials of S_{d} for each d is compatible with the monoid structure on the monomials of S if whenever $x^{A}>x^{B}$ for two monomials x^{A}, x^{B}, then $x^{C} x^{A}>$ $x^{C} x^{B}$ for all monomials x^{C}. We shall only consider orders satisfying this compatibility condition.

If an order $>$ is a strict order on the monomials of each degree, one can use $>$ in applying the division algorithm to constructing a standard (Gröbner) basis for I. The standard basis for I, and its properties, will vary in a crucial way with the choice of order > . The subject of computing standard or Gröbner bases has a long history; see [Bay85] for a recent survey.

One can generalize the necessary definitions to nonstrict orders > , which fail to distinguish between all monomials of a given degree: For each polynomial $f \in S$, define in (f) to be the sum of those terms $c x^{A}$ of f which are greatest with respect to the order $>$. Define $\operatorname{in}(I)$ to be the ideal generated by $\{\operatorname{in}(f) \mid f \in I\}$. Define f_{1}, \ldots, f_{r} to be a standard basis for I with respect to the order $>$ if $\operatorname{in}\left(f_{1}\right), \ldots, \operatorname{in}\left(f_{r}\right)$ generate the ideal $\operatorname{in}(I)$. If $>$ is a strict order, $\operatorname{in}(I)$ will be a monomial ideal; if $>$ is not strict, in (I) may fail to be a monomial ideal.

A nonstrict order $>_{1}$ can be refined to a strict order by breaking any ties with a fixed strict order $>_{2}$; the resulting order $>_{3}$ is then a compatible order, so the usual division algorithm can be applied to compute standard bases with respect to $>_{3}$. Let $\mathrm{in}_{1}, \mathrm{in}_{2}, \mathrm{in}_{3}$ correspond to $>_{1},>_{2},>_{3}$. We shall see that $\mathrm{in}_{3}(I)=\mathrm{in}_{2}\left(\mathrm{in}_{1}(I)\right)$, so a standard basis with respect to $>_{3}$ is already a standard basis with respect to $>_{1}$. Call $>_{3}$ the refinement of $>_{1}$ by $>_{2}$. Thus, refinements provide a mechanism for computing with nonstrict orders. This has been observed for example in [MoMö83], where in the affine setting, homogenizing bases (in the above sense, standard bases with respect to the total degree order) are computed via standard bases with respect to a strict order.

We recall two frequently used strict orders: The lexicographic order is defined by $x^{A}>x^{B}$ if the first nonzero entry in $A-B$ is positive. The reverse lexico-

