GEODESICS IN HOMOLOGY CLASSES

RALPH PHILLIPS AND PETER SARNAK

§1. Introduction. Let M be a compact Riemannian manifold of negative curvature and let $\pi(x)$ denote the number of prime closed geodesics on M whose length is at most x. A well known result due to Margulis [M] asserts that asymptotically

(1.1)
$$\pi(x) \sim ce^{hx}/x;$$

here h is the topological entropy of the geodesic flow and c is a suitable positive constant. We call such a result a prime geodesic theorem. Recently Adachi and Sunada [A] studied the following interesting prime geodesic problem: If $\phi \colon \Gamma \to H_1(M, \mathbb{Z})$ is the projection of the fundamental group onto the first homology group, then for $\beta \in H_1$ let $\pi_{\beta}(x)$ be the number of primitive closed geodesics γ on M of length at most x for which $\phi(\gamma) = \beta$. They prove that

(1.2)
$$\lim_{x \to \infty} \frac{\log \pi_{\beta}(x)}{x} = h.$$

Our aim in this note is to prove a more detailed prime geodesic theorem for $\pi_{\beta}(x)$ when M is an n-dimensional hyperbolic manifold. Note that $\pi_{\beta}(x)$ counts the number of prime geodesics of length at most x whose algebraic winding about a generating set of cycles is exactly β . As pointed out by Adachi and Sunada the most interesting case is when $H_1(M, \mathbb{Z})$ is infinite for then the nature of the asymptotics should change. Our analysis shows that this is so and, in fact, that the rank of $H_1(M, \mathbb{Z})$ characterizes the asymptotic behaviour.

Let $\psi \colon \Gamma \to \Lambda$ be a surjective homomorphism of the fundamental group Γ of M onto an abelian group Λ . Let r be the rank of Λ and let m be the order of the torsion of Λ ; i.e., Λ is isomorphic to $\mathbb{Z}^r \cdot F$, F being finite of order m.

THEOREM. For $\beta \in \Lambda$ we have the asymptotic expansion

(1.3)
$$\pi_{\beta}(x) \sim \frac{e^{(n-1)x}}{mx^{r/2+1}} \left(c_0 + c_1/x + c_2/x^2 \dots \right)$$

as $x \to \infty$. Here $c_0 > 0$ and is independent of β ; c_0 is the determinant of a certain period matrix of harmonic 1-forms on M.

Received September 8, 1986. The work of the first author was supported in part by NSF under Grant No. DMS-85-03297 and the second by NSF Grant No. DMS-85-04329.