GEODESICS IN HOMOLOGY CLASSES

RALPH PHILLIPS and PETER SARNAK

§1. Introduction. Let M be a compact Riemannian manifold of negative curvature and let $\pi(x)$ denote the number of prime closed geodesics on M whose length is at most x. A well known result due to Margulis [M] asserts that asymptotically

$$
\begin{equation*}
\pi(x) \sim c e^{h x} / x \tag{1.1}
\end{equation*}
$$

here h is the topological entropy of the geodesic flow and c is a suitable positive constant. We call such a result a prime geodesic theorem. Recently Adachi and Sunada [A] studied the following interesting prime geodesic problem: If $\phi: \Gamma \rightarrow H_{1}(M, \mathbb{Z})$ is the projection of the fundamental group onto the first homology group, then for $\beta \in H_{1}$ let $\pi_{\beta}(x)$ be the number of primitive closed geodesics γ on M of length at most x for which $\phi(\gamma)=\beta$. They prove that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\log \pi_{\beta}(x)}{x}=h . \tag{1.2}
\end{equation*}
$$

Our aim in this note is to prove a more detailed prime geodesic theorem for $\pi_{\beta}(x)$ when M is an n-dimensional hyperbolic manifold. Note that $\pi_{\beta}(x)$ counts the number of prime geodesics of length at most x whose algebraic winding about a generating set of cycles is exactly β. As pointed out by Adachi and Sunada the most interesting case is when $H_{1}(M, \mathbb{Z})$ is infinite for then the nature of the asymptotics should change. Our analysis shows that this is so and, in fact, that the rank of $H_{1}(M, \mathbb{Z})$ characterizes the asymptotic behaviour.

Let $\psi: \Gamma \rightarrow \Lambda$ be a surjective homomorphism of the fundamental group Γ of M onto an abelian group Λ. Let r be the rank of Λ and let m be the order of the torsion of Λ; i.e., Λ is isomorphic to $\mathbb{Z}^{r} \cdot F, F$ being finite of order m.

Theorem. For $\beta \in \Lambda$ we have the asymptotic expansion

$$
\begin{equation*}
\pi_{\beta}(x) \sim \frac{e^{(n-1) x}}{m x^{r / 2+1}}\left(c_{0}+c_{1} / x+c_{2} / x^{2} \ldots\right) \tag{1.3}
\end{equation*}
$$

as $x \rightarrow \infty$. Here $c_{0}>0$ and is independent of $\beta ; c_{0}$ is the determinant of a certain period matrix of harmonic 1-forms on M.

Received September 8, 1986. The work of the first author was supported in part by NSF under Grant No. DMS-85-03297 and the second by NSF Grant No. DMS-85-04329.

