A RELATION BETWEEN DEDEKIND SUMS AND KLOOSTERMAN SUMS

ILAN VARDI

1. Introduction and statement of results. The Dedekind sum is defined for relatively prime integers c, d by:

$$
s(d, c)=\sum_{j=1}^{c}((j / c) \cdot((j d / c))
$$

where $((x))=\langle x\rangle-\frac{1}{2}$ for x a real number, and $\langle x\rangle \in[0,1)$ is the fractional part of x.

The classical Kloosterman sum is:

$$
S(m, n, c)=\sum_{\substack{0<d<c \\(d, c)=1 \\ a d=1(\bmod c)}} e\left(\frac{a m+d n}{c}\right),
$$

where $e(x)=e^{2 \pi i x}$.
We prove a simple relation between these sums:
Theorem 1.1. Let $m \in N$, then:

$$
\sum_{\substack{0<d<c \\(d, c)=1}} e(12 m s(d, c))=S(m, m, c)
$$

Proof. It is known [Rademacher] that $12 s(d, c)-\frac{a+d}{c}$ is always an integer whenever $a d \equiv 1(\bmod c)$. So we have:

$$
\sum_{\substack{0<d<c \\(d, c)=1}} e(12 m s(d, c))=\sum_{\substack{0<d<c \\(d, c)=1 \\ a d \equiv 1(\bmod c)}} e\left(\frac{a m+d m}{c}\right)=S(m, m, c)
$$

As an application of this, we have
Theorem 1.2.

$$
\begin{equation*}
\sum_{\substack{0<c<x}} \sum_{\substack{0<d<c \\(d, c)=1}} e(12 m s(d, c)) \ll x^{\frac{3}{2}+\varepsilon}, \quad \forall \varepsilon>0 \tag{1.1}
\end{equation*}
$$

Received May 27, 1986. Revision received September 26, 1986.

