SOME ASPHERICAL MANIFOLDS

MICHAEL W. DAVIS

0. Introduction. Let Y denote the vector space of real, tridiagonal, ${ }^{1}$ symmetric, $(n+1) \times(n+1)$ matrices. Let Λ be any set of $n+1$ distinct real numbers. Let P^{n} denote the set of those matrices in Y with spectrum equal to Λ. In [T], Carlos Tomei proves that the space P^{n} is a closed n-manifold. Of course, this is hardly surprising; however, Tomei goes on to show that these manifolds have several amazing properties. The most surprising property is that P^{n} is aspherical: in fact, its universal cover is diffeomorphic to Euclidean n-space. P^{1} is a circle. P^{2} is a surface of genus two. P^{3} is the "double" of a certain hyperbolic 3-manifold of finite volume. ${ }^{2}$ The proof of the asphericity of P^{n} in [T] uses results from [D1] on groups generated by reflections. Before continuing our description of these manifolds, we need to make a few general remarks concerning reflection groups.

Suppose that W is a discrete group acting smoothly and properly on a manifold M and that W is generated by smooth reflections. A chamber X for W on M is the closure of a component of the set of nonsingular points. Let S denote the set of reflections on W across the codimension-one faces of X. Then (W, S) is a Coxeter system (cf. [D1]). The manifold M can be reconstructed from the chamber X and the group W : paste together copies of X, one for each element of W, in the obvious fashion. In [D1], we gave simple necessary and sufficient conditions for the result of this pasting construction to be contractible.

There is a natural group generated by reflections on Tomei's manifold P^{n}. This can be seen as follows. The group $O(n+1)$ acts by conjugation on the vector space of $(n+1) \times(n+1)$ symmetric matrices. The kernel of this action is $\{ \pm 1\}$. Let J denote the group \{diagonal matrices in $O(n+1)\} /\{ \pm 1\}$. Obviously, $J \cong(\mathbb{Z} / 2)^{n}$. The subspace Y is J-stable. J acts on Y as the group of all possible sign changes of the off-diagonal entries. Thus, J is a linear reflection group on Y. Since $O(n+1) /\{ \pm 1\}$ preserves the spectrum of a symmetric matrix, the submanifold P^{n} is J-stable and J is a smooth reflection group on it. A fundamental chamber X^{n} for J on P^{n} is the intersection of P^{n} with the set of

[^0]Received March 12, 1985. Revision received March 12, 1986. Partially supported by NSF Grant DM58412891.

[^0]: ${ }^{1}$ To say that a matrix $y=\left(y_{i j}\right)$ is "tridiagonal" means that $y_{i j}=0$ whenever $|i-j|>1$.
 ${ }^{2}$ This means that there is a compact 3 -manifold M^{3} such that (a) each component of ∂M^{3} is torus. (b) the interior of M^{3} is homeomorphic to a hyperbolic 3-manifold of finite volume, and (c) P^{3} is the double of M^{3}.

