CUBIC HYPERSURFACES AND A RESULT OF HERMITE

DANIEL F. CORAY

Dedicated to Yu. I. Manin

Let k be an infinite field, and K / k a separable extension of degree 5 . The following result is due to Hermite [5]: there exists an element η in K whose minimal polynomial (over k) is of the form $x^{5}+a x^{3}+b x+c$.

In his proof Hermite used a rather complicated invariant. Recently, Serre asked whether there is a more natural approach in terms of cubic surfaces. Indeed it is easy to reformulate Hermite's result as asserting the existence of a k-point on some specific cubic surface (1.8), which depends on the extension K / k.

It seems that this question originated from a letter of Joe Buhler to Serre (July 1982), in which Buhler mentioned Hermite's result and asked about possible generalizations to higher degrees.

In this paper we give a new proof of Hermite's result by studying the lines lying on the corresponding cubic surface. We also prove a generalization to degree 6 by constructing some curves in \mathbb{P}^{4}. Both techniques were already used in [2], though in simpler situations. The results of [2] also imply generalizations to degree 7 or 8 , provided k belongs to some special class of fields, which includes all local fields.

I am grateful to J-P. Serre for suggesting the problem and to J-F. Mestre for communicating the information he had on the question. I also thank J. Buhler and A . Brumer for their comments on the manuscript.
§1. Reformulation of Hermite's result and generalization. The main purpose of this section is to introduce some notation. The equivalence of (\mathbb{H}) and $\left(\mathbb{H}^{\prime}\right)$ is almost evident, but the argument supplied below (Proposition 1.1) gives us the opportunity to prove some auxiliary results, which will be needed later on.

Notation. If $K=k(\theta) / k$ is a separable extension of degree d, we denote by $\tau_{i}(i=1, \ldots, d)$ the various k-embeddings of K in a fixed algebraic closure \bar{k} of k. We consider the formal expression

$$
\begin{equation*}
x=x_{0}+x_{1} \theta+\cdots+x_{d-1} \theta^{d-1}, \tag{1.1}
\end{equation*}
$$

Received November 29, 1986.

