p-ADIC K-THEORY OF ELLIPTIC CURVES

CHRISTOPHE SOULÉ

A Yu. I. Manin, avec admiration et sympathie.

Introduction. Let E be an elliptic curve over a number field F. A well-known conjecture of Birch and Swinnerton-Dyer asserts that the rank of the Mordell-Weil group $E(F)$ of rational points of E is equal to the order of vanishing of its L function $L(E ; s)$ at $s=1$. Bloch [2] and Beilinson [1] have proposed that the values of $L(E ; s)$ at other integral points are related to other invariants of E, namely its higher K-groups $K_{m}(E), m \in \mathbb{N}$ (notice that $K_{0}(E)=\mathbb{Z}^{2} \oplus E(F)$). For instance, if we assume for simplicity that E has potentially good reduction, for any integer $i \geqslant 2$, the rank of $K_{2 i-2}(E)$ should be equal to the degree [$F: \mathbb{Q}$] of F over \mathbb{Q}. On the other hand, the order of vanishing of $L(E ; s)$ at $s=2-i$ should be $[F: \mathbb{Q}][14]$. Furthermore the leading coefficient of $L(E ; s)$ at $s=2-i$ is expected to be equal to a regulator defined using $K_{2 i-2}(E)$, up to a rational number [1].

The descent theory (or Iwasawa theory) of elliptic curves with complex multiplication gives deep results about the conjecture of Birch and SwinnertonDyer [4], and provides it with p-adic analogs. In this paper we investigate how its methods and results can also be used, in some cases, to give p-adic analogs of Bloch and Beilinson's results.

Let us fix an odd prime p and consider the K-theory groups of E with coefficients in \mathbb{Z} / p^{n}, denoted $K_{m}\left(E ; \mathbb{Z} / p^{n}\right)$. We shall be interested in the groups $K_{m}\left(E ; \mathbb{Z}_{p}\right)=\lim _{\leftarrow} K_{m}\left(E ; \mathbb{Z} / p^{n}\right)$ and $K_{m}\left(E ; \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)=\lim _{\rightarrow{ }_{n}} K_{m}\left(E ; \mathbb{Z} / p^{n}\right)$.

In Theorems 3.3.2 and 3.4, we use results of Yager [25] and Gross [7] to give examples of curves E and primes p such that the rank of $K_{2}\left(E, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$ is equal to $[F: \mathbb{Q}]$. The idea of the proof is first to compare $K_{2}\left(E, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$ with the étale cohomology group $H^{2}\left(E, \mathbb{Q}_{p} / \mathbb{Z}_{p}(2)\right)$. This can be done using work of Merkurjev-Suslin [11] and Dwyer-Friedlander [5] (Proposition 3.2.). We then compute $H^{2}\left(E, \mathbb{Q}_{p} / \mathbb{Z}_{p}(2)\right)$ using descent theory and some assumptions of regularity on the prime p.

In paragraph 4, given an elliptic curve with complex multiplication by an imaginary quadratic field K (and defined over K) we define, in some cases, a higher p-adic regulator map

$$
r_{i}: K_{2 i-2}\left(E, \mathbb{Z}_{p}\right) \rightarrow \mathbb{Z}_{p}^{2}
$$

