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ON THE MONODROMY GROUPS ATTACHED TO
CERTAIN FAMILIES OF EXPONENTIAL SUMS
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Introduction. The main theme of this paper is that very innocuous looking
one-parameter families of exponential sums over finite fields can have quite
strong variation as the parameter moves. Even when the parameter variety is the
affine line A or the multiplicative group G over a finite field, the algebraic group
Ggeom which controls the variation is often "as large as possible". These results
are the finite-field analogue of the fact that in characteristic zero, very simple
differential equations on A and on Gm can have very large differential galois
groups.

In Part 1 we develop some general results concerning irreducible lisse sheaves
on open curves in characteristic p > 0, in part modeled on [Ka-2] and [Ka-Pi]. In
Parts 2 and 3 we calculate Ggeom for the one-parameter families of exponential
sums in characteristic p which correspond to the Kloosterman and Airy differen-
tial equations respectively of any rank n > 2. It is very striking that in both of
these cases, our results on Ggom are in perfect analogy with the results of [Ka-2]
and [Ka-Pi] on the differential galois group Gga of the corresponding differential
equation, as soon as p > 2n + 1. Indeed, one can speculate that in some future
"motivic grand unification", the two sorts of results will both be "realizations" of
a single motivic result. For the moment, we must be content to offer the results
themselves as indirect evidence for the existence of such a unification.

Part 1. Lisse sheaves on open curves: general results. Throughout this paper,
we fix a prime number p, an algebraically closed field k of characteristic p, a
prime number ’#= p, and an algebraic closure Q__e of Qe- Let U be a smooth
connected affine curve over k, and - a lisse Qe-sheaf on U of rank n > 1.
We denote by q the fundamental group q(U, ) of U with base point a
geometric genetic point of U, by p the n-dimensional Qe-representation of q
on which -"is", by Ggom the Zariski closure of tg(cq) in GL(n, Qe), and by
(Ggom) the identity component of Ggom. We say that - is irreducible if p is
irreducible as a representation of q, or equivalently if Ggeom acts irreducibly in
its given n-dimensional representation. We say that -, or p, is Lie-irreducible if
the restriction of p to (Ggom)0 is irreducible, or equivalently if the restriction of p
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