CORRECTION TO "ON THE DIFFERENTIABILITY ..." (Duke Mathematical Journal, **52** (1985) 475–484) John Sylvester

Lemma 3 on page 480 was stated incorrectly, it should read:

LEMMA 3. $\wedge : S^{n \times n} \to \mathbb{R}$ is Lipschitz continuous. More specifically, for symmetric A and any matrix B with $\wedge(B)$ appropriately ordered (e.g., by analytic continuation from $\wedge(A)$ if $\varepsilon(A) \neq 0$)

$$|\wedge (A) - \wedge (B)|_{\infty} \leq 2n||A - B||$$

where $|\delta|_{\infty} = \sup_{i} |\delta_{i}|$ and ||C|| is the operator norm associated with the standard inner product on \mathbb{R}^{n} .

Proof. We first show that every component of $\wedge(B)$ is within distance ||A - B|| from some component of $\wedge(A)$. Indeed, if $|z - \wedge_i(A)| > ||A - B||$ $\forall i$, then $||(z - A)^{-1}|| < ||A - B||^{-1}$ because A is symmetric. Hence

 $z - B = (z - A)^{-1} (I + (z - A)^{-1} (A - B))$

is invertible and $z \notin \wedge(B)$.

Next, we group the eigenvalues of A into sets G_i as follows

$$G_i = \left\{ \lambda_{k_i+1}, \lambda_{k_i+2}, \dots, \lambda_{k_{i+1}} \right\}$$

where

$$|\lambda_{k_i+1} - \lambda_{k_i}| > 2||A - B|| \quad \forall i$$

and

$$|\lambda_{k_i+j} - \lambda_{k_i+j+1}| \leq 2\|A - B\| \quad \forall k_i + j < k_{i+1}.$$

Let $\delta > 0$ and define

$$\mathcal{M}_i = \left\{ z \in \mathsf{C} | \operatorname{dist}(z, G_i) < (1 + \delta) \| A - B \| \right\}$$

and consider $\wedge (A + \zeta(B - A))$ for $\zeta \in \mathbb{C} + |\zeta| \le 1$. For $|\zeta|$ small there are

Received February 4, 1986.