UNITARY REPRESENTATIONS OF THE VIRASORO ALGEBRA

AKIHIRO TSUCHIYA AND YUKIHIRO KANIE

Contents

Introduction	
§1. Unitarizable highest weight representations of the Virasoro algebra	.1015
§2. Affine Lie algebras of type $C_l^{(1)}$. 1019
§3. Construction of unitary representations	.1025
§4. Branching law of $L(\Lambda)$ w.r.t. $(C_{l}^{(1)}, C_{1}^{(1)} + C_{l-1}^{(1)}) \dots$.1035
Peferences	1044

Introduction. The Virasoro algebra ${\mathscr L}$ is the Lie algebra over C of the following form:

(1)
$$\mathscr{L} = \sum_{n \in \mathbb{Z}} \mathbb{C} e_n \oplus \mathbb{C} e_0',$$

with the relations

(2)
$$[e_m, e_n] = (m-n)e_{m+n} + \frac{m^3 - m}{12} \delta_{m+n,0} e'_0(m, n \in \mathbb{Z});$$

 $e'_0 \in$ the center of the Lie algebra \mathscr{L} .

The Lie algebra of this type was first appeared in the dual string model of elementary particle physics (cf. S. Mandelstam [12]). Quite recently the Virasoro algebra was used to analyze critical phenomena in the two dimensional statistical physics (cf. A. A. Belavin-A. M. Polyakov-A. B. Zamolodchikov [1]).

Introduce the triangular decomposition $\mathcal{L} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-$ of \mathcal{L} , where

(3)
$$\mathfrak{n}_{\pm} = \sum_{n \geq 1} \mathbb{C} e_{\pm n}; \qquad \mathfrak{h} = \mathbb{C} e_0 \oplus \mathbb{C} e_0'.$$

By V. G. Kac [8], for each $(h, c) \in \mathbb{C}^2$, there exists an irreducible \mathscr{L} -module L(h, c), unique up to an isomorphism, with the following property. There exists a

Received October 24, 1985.