STRUCTURE OF POSITIVE SOLUTIONS TO $(-\Delta + V)u = 0$ IN R^n

MINORU MURATA

Table of Contents

§1. Introduction	.869
§2. Classification of potentials, integral representation, and stability	.872
§3. Radially symmetric potentials	.884
§4. Examples	.897
§5. Principally radially symmetric potentials	.905
§6. Positive solutions in a half space	.918
§7. Wildly nonradially symmetric potentials	.920
Appendix 1. The one dimensional case	.931
Appendix 2. Proof of Theorems 4.9 and 4.10	.934

§1. Introduction. Positive solutions of second order elliptic equations have fascinated many mathematicians (see [1-5, 7, 9, 11-13, 16, 19-21]). In this paper we investigate the structure of all positive solutions of a stationary Schrödinger equation

$$(1.1) \qquad (-\Delta + V)u = 0 \quad \text{in } R^n,$$

where the potential V is assumed to be a real-valued function belonging to $L_{p,\text{loc}}(R^n)$ with p > n/2 for $n \ge 2$ and p = 1 for n = 1. We are interested in an explicit representation formula for positive solutions, their asymptotics at infinity, and the Dirichlet problem with a boundary condition at infinity. We are also interested in the stability and unstability of the structure of positive solutions: how the structure is influenced by the change of potentials.

These problems arise from [13-15], where the asymptotic behavior as $t \to \infty$ of a Schrödinger semigroup with a very short range potential and the existence and uniqueness of solutions for elliptic operators like $(-\Delta)^m$ on R^n were investigated. A first step toward extension of the results given there to a Schrödinger operator with a more general potential seems to be establishing an explicit representation formula for all positive solutions. As for the close connection between the positive solutions of a Schrödinger equation and the asymptotic behavior as $t \to \infty$ of the corresponding Schrödinger semigroup, see [13, 18, 19] and references therein.