GROTHENDIECK GROUPS OF POLYNOMIAL AND LAURENT POLYNOMIAL RINGS

V. SRINIVAS

For any noetherian scheme T, recall that

$$
\begin{aligned}
& N K_{0}(T)=\operatorname{coker}\left(K_{0}(T) \rightarrow K_{0}\left(T \times \mathrm{A}^{1}\right)\right) \\
& \begin{aligned}
K_{-1}(T)=\operatorname{coker}\left(K _ { 0 } \left(T \times_{\mathrm{Z}} \operatorname{Spec} \mathrm{Z}[\right.\right. & t]) \oplus K_{0}\left(T \times_{\mathrm{Z}} \operatorname{Spec} \mathrm{Z}\left[t^{-1}\right]\right) \\
& \left.\rightarrow K_{0}\left(T \times_{\mathrm{Z}} \operatorname{Spec} \mathrm{Z}\left[t, t^{-1}\right]\right)\right)
\end{aligned}
\end{aligned}
$$

Here K_{0} denotes the Grothendieck group of vector bundles (locally free sheaves of finite rank). It is well known that if T is regular, then $N K_{0}(T)=K_{-1}(T)=0$. If T is a nonnormal scheme, then various simple examples exist with $N K_{0}(T) \neq 0$ or $K_{-1}(T) \neq 0$; for example $N K_{0}(T) \neq 0$ for $T=\operatorname{Spec}\left(k\left[t^{2}, t^{3}\right]\right)$ while $K_{-1}(T)$ $\neq 0$ for $T=\operatorname{Spec}\left(k\left[t^{2}-1, t^{3}-t\right]\right)$. However it is more difficult to construct examples of normal varieties with $N K_{0} \neq 0$.

Murthy and Pedrini [MP] showed that $N K_{0}=0$ for certain surfaces with isolated rational singularities. In [W1] Weibel gave the first example of a normal ring in positive characteristic with $N K_{0} \neq 0$, based on Example 6 of the appendix to Nagata's book Local Rings [N]. In the same paper, Weibel discusses examples of Swan of normal affine hypersurfaces of dimension $\geqslant 3$ with $N K_{0} \neq 0$, where the equation of the hypersurface is of the form $x_{0} x_{1}=f\left(x_{2}, \ldots, x_{n}\right)$ and $f\left(x_{2}, \ldots, x_{n}\right)=0$ in A^{n-2} is nonnormal. ${ }^{1}$

One way to construct examples with $N K_{0} \neq 0$ is to use a remark of Swan and Weibel that for a graded ring $A=\bigoplus_{n \geqslant 0} A_{n}, K_{0}(A) \cong K_{0}(A[t])$ implies that $K_{0}(A) \cong K_{0}\left(A_{0}\right)$. Thus if $A_{0}=k$ is a field, and $K_{0}(A) \not \equiv \mathrm{Z}$, then $N K_{0}(A) \neq 0$. Using this, Bloch and Murthy (unpublished, but see [S1]) showed that $N K_{0}(A)$ $\neq 0$ for $A=\mathrm{C}[x, y, z] /\left(z^{2}+x^{3}+y^{7}\right)$.

In [S1] the author used relative K-theory to give numerous examples of affine cones over projectively normal curves over C with $K_{0} \neq \mathrm{Z}$; by the Swan-Weibel remark these cones have $N K_{0} \neq 0$. The examples are the cones over curves $C \subset \mathrm{P}^{n}$ with $H^{1}\left(C, \mathcal{O}_{C}(1)\right) \neq 0$ i.e., curves embedded by a special linear system. In characteristic $p>0$, the author showed that $K_{0}=\mathbf{Z}$ for any (positively) graded 2-dimensional affine domain over an algebraically closed field, so the

[^0]Received December 26, 1984. Revision received September 27, 1985.

[^0]: ${ }^{1}$ See also [R].

