PROPER HOLOMORPHIC MAPS FROM BALLS

FRANC FORSTNERIČ

1. Introduction and statement of the results. If $\Gamma \subset \mathrm{U}(n)$ is a finite unitary group, the quotient C^{n} / Γ can be realized as a normal algebraic subvariety V in some C^{s} according to a theorem of Cartan [4]. In order to do this we choose a finite number of homogeneous Γ-invariant holomorphic polynomials q_{1}, \ldots, q_{s} that generate the algebra of all Γ-invariant polynomials [17]; the induced map $Q=\left(q_{1}, \ldots, q_{s}\right): \mathrm{C}^{n} \rightarrow \mathrm{C}^{s}$ is proper and induces a homeomorphism of C^{n} / Γ onto the image $V=Q\left(\mathrm{C}^{n}\right)$. The restriction of Q to the unit ball B^{n} maps the ball properly onto a domain G in V.

Rudin proved a partial converse to this [22]: If $f: \mathrm{B}^{n} \rightarrow G$ is a proper holomorphic map from the ball onto a domain in $\mathrm{C}^{n}, n \geqslant 2$, that extends to a \mathbf{C}^{1} map on $\overline{\mathrm{B}}^{n}$, then there are a finite unitary group Γ and an automorphism ϕ of B^{n} such that $f=\eta \circ Q \circ \phi$, where $Q: \mathrm{B}^{n} \rightarrow \mathrm{~B}^{n} / \Gamma$ is the quotient projection and $\eta: \mathrm{B}^{n} / \Gamma \rightarrow G$ is a biholomorphic map. The group Γ is generated by reflections, i.e., elements of finite order which fix a complex hyperplane. A result of Bedford and Bell [2] implies the same result even when f does not extend to the closure of B^{n}; moreover, we may replace G by an arbitrary normal complex space of dimension n. See also [19]. The quotient C^{n} / Γ is nonsingular if and only if the group Γ is generated by reflections, i.e., elements of finite order in $\mathrm{U}(n)$ that fix a complex hyperplane [12, 20, 22]. The boundary of the image G is never smooth in this case [22].

In this paper we shall study the structure of proper maps from balls into strictly pseudoconvex domains G in complex manifolds. A finite unitary group $\Gamma \subset \mathrm{U}(n)$ is call fixed point free if 1 is not the eigenvalue of any $\gamma \in \Gamma \backslash\{1\}$. Equivalently, Γ is fixed point free if it acts without fixed points on $\mathrm{C}^{n} \backslash\{0\}$.
1.1. Theorem. Let $f: \mathrm{B}^{n} \rightarrow G, n \geqslant 2$, be a proper holomorphic map into a relatively compact, strictly pseudoconvex domain G in a complex manifold. If f extends to a \mathbf{C}^{1} map on $\overline{\mathbf{B}}^{n}$, then there exist a finite fixed point free unitary group Γ and an automorphism ϕ of B^{n} such that

$$
\begin{equation*}
f=\eta \circ Q \circ \phi \tag{1.1}
\end{equation*}
$$

where $Q: \mathrm{B}^{n} \rightarrow \mathrm{~B}^{n} / \Gamma$ is the quotient projection and $\eta: \mathrm{B}^{n} / \Gamma \rightarrow f\left(\mathrm{~B}^{n}\right)$ is the normalization of the subvariety $f\left(\mathrm{~B}^{n}\right)$ of G.

[^0] Fellowship.

[^0]: Received April 23, 1985. Research supported in part by a Sloan Foundation Predoctoral

