DUKE MATHEMATICAL JOURNAL ©

PROPER HOLOMORPHIC MAPS FROM BALLS

FRANC FORSTNERIČ

1. Introduction and statement of the results. If $\Gamma \subset U(n)$ is a finite unitary group, the quotient \mathbb{C}^n/Γ can be realized as a normal algebraic subvariety V in some \mathbb{C}^s according to a theorem of Cartan [4]. In order to do this we choose a finite number of homogeneous Γ -invariant holomorphic polynomials q_1, \ldots, q_s that generate the algebra of all Γ -invariant polynomials [17]; the induced map $Q = (q_1, \ldots, q_s): \mathbb{C}^n \to \mathbb{C}^s$ is proper and induces a homeomorphism of \mathbb{C}^n/Γ onto the image $V = Q(\mathbb{C}^n)$. The restriction of Q to the unit ball \mathbb{B}^n maps the ball properly onto a domain G in V.

Rudin proved a partial converse to this [22]: If $f: \mathbb{B}^n \to G$ is a proper holomorphic map from the ball onto a domain in \mathbb{C}^n , $n \ge 2$, that extends to a \mathbb{C}^1 map on $\overline{\mathbb{B}}^n$, then there are a finite unitary group Γ and an automorphism ϕ of \mathbb{B}^n such that $f = \eta \circ Q \circ \phi$, where $Q: \mathbb{B}^n \to \mathbb{B}^n / \Gamma$ is the quotient projection and $\eta: \mathbb{B}^n / \Gamma \to G$ is a biholomorphic map. The group Γ is generated by reflections, i.e., elements of finite order which fix a complex hyperplane. A result of Bedford and Bell [2] implies the same result even when f does not extend to the closure of \mathbb{B}^n ; moreover, we may replace G by an arbitrary normal complex space of dimension n. See also [19]. The quotient \mathbb{C}^n / Γ is nonsingular if and only if the group Γ is generated by reflections, i.e., elements of finite order in U(n) that fix a complex hyperplane [12, 20, 22]. The boundary of the image G is never smooth in this case [22].

In this paper we shall study the structure of proper maps from balls into strictly pseudoconvex domains G in complex manifolds. A finite unitary group $\Gamma \subset U(n)$ is call *fixed point free* if 1 is not the eigenvalue of any $\gamma \in \Gamma \setminus \{1\}$. Equivalently, Γ is fixed point free if it acts without fixed points on $\mathbb{C}^n \setminus \{0\}$.

1.1. THEOREM. Let $f: \mathbb{B}^n \to G$, $n \ge 2$, be a proper holomorphic map into a relatively compact, strictly pseudoconvex domain G in a complex manifold. If f extends to a \mathbb{C}^1 map on $\overline{\mathbb{B}}^n$, then there exist a finite fixed point free unitary group Γ and an automorphism ϕ of \mathbb{B}^n such that

$$f = \eta \circ Q \circ \phi, \tag{1.1}$$

where $Q: B^n \to B^n/\Gamma$ is the quotient projection and $\eta: B^n/\Gamma \to f(B^n)$ is the normalization of the subvariety $f(B^n)$ of G.

Received April 23, 1985. Research supported in part by a Sloan Foundation Predoctoral Fellowship.