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I. Introduction and statement of the results. In this paper we consider real
valued .l//2’2-solutions if(x) of

(-A+V-E)q=0 for xa, fn=(x’lxl=r>R}, R>0

(1.1)
Here the Sobolev space W’ is defined as in [9]. ThrouBhout the paper it will be
assumed that E ( 0 and that V(x) fulfills the followin$ conditions:

(A1) V(x) is real valued and continuous in 2R

(A2) lim V(x) 0 (A)

(A3) inf (V(x)- 1/41x1-2- E)>0.x
Clearly, (A1), (A2) and E < 0 imply that for some R > R infxeu,(V(x)
1/41x1-2- E) > 0. So without loss we shall assume (A3).
Considering -A + V-E on C0(fR) the above assumptions imply that

C’(fR) is a core of the unique selfadjoint operator Hn associated to
-A + V- E with Dirichlet boundary conditions on Of and due to (A3) Hn is
positive definite. This guarantees that the Dirichlet problem in f is uniquely
solvable given q on Ixl R. In particular it folloqcs that fs’ 2(r, t0)dt > 0 for all
r > R, with r, denoting polar coordinates (see e.g., [7] and also Theorem 1).
Furthermore the above assumptions imply that q has continuous derivatives for
Ixl > R (see e.g., [9]). We note that our assumptions on V are somewhat stronger
then we shall need but will be kept for the sake of simplicity.
As in [11] we shall take a perturbational point of view and split V so that

V(x)----- Vl(r) + V2(x)
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