MAXIMAL OPERATORS RELATED TO THE RADON
 TRANSFORM AND THE CALDERON-ZYGMUND METHOD OF ROTATIONS

MICHAEL CHRIST, JAVIER DUOANDIKOETXEA, and JOSÉ L. RUBIO DE FRANCIA

1. Introduction. The following maximal operator has arisen in work of C. Fefferman [17] and A. Córdoba [10, 11] on the L^{p} boundedness of the Bochner-Riesz spherical summation multipliers in R^{n}. Let $\delta>0$ be small and denote by \mathscr{R}_{δ} the collection of all rectangular parallelopipeds in R^{n}, regardless of orientation, which contain the origin and have one side of length r and $n-1$ sides of lengths δr, for all $r>0$. Define

$$
M_{\delta} f(x)=\sup _{R \in \mathscr{R}_{\delta}}|R|^{-1} \int_{R}|f(x-y)| d y .
$$

The fundamental question concerning M_{δ} is whether the inequality

$$
\begin{equation*}
\left\|M_{\delta} f\right\|_{n} \leqslant C|\log \delta|^{\beta}\|f\|_{n} \tag{1.1}
\end{equation*}
$$

holds for some $\beta, C<\infty$ as $\delta \rightarrow 0$. Córdoba [10] has established this when $n=2$, and has obtained certain partial results in higher dimensions. Our first result is a sharper but still partial one. First, let us reformulate (1.1) by conjecturing that

$$
\begin{equation*}
\left\|M_{\delta} f\right\|_{p} \leqslant C|\log \delta|^{\beta} \delta^{-\alpha}\|f\|_{p}, \quad 1<p \leqslant n \tag{1.2}
\end{equation*}
$$

for some $\beta, C<\infty$ depending only on n and p, where $\alpha=n / p-1$.
Since M_{δ} is bounded by $C \delta^{1-n}$ times the Hardy-Littlewood maximal function, (1.2) follows from (1.1) by interpolating between $p=1$ and $p=n$. Conversely, this power α is best possible, as may be seen by taking f to be the characteristic function of a ball.

Proposition. The inequality (1.2) holds in R^{n} for all $1<p \leqslant(n+1) / 2$.
For $p \leqslant 2$, this is the partial result of Córdoba [11] alluded to above.
What is striking about this proposition is its relationship to the best bounds currently known concerning Bochner-Riesz multipliers. In dimension $n \geqslant 3$ the full conjectured mapping properties of those multipliers are known to hold for all $p \geqslant 2(n+1) /(n-1)$. Work of Córdoba and Carbery [3, 4] suggests strongly that

Received July 16, 1985. First author supported in part by N.S.F. grant. Third author supported in part by C.A.I.C.Y.T. Project No. 2805/83.

