MAXIMAL OPERATORS RELATED TO THE RADON TRANSFORM AND THE CALDERON-ZYGMUND METHOD OF ROTATIONS

MICHAEL CHRIST, JAVIER DUOANDIKOETXEA, and JOSÉ L. RUBIO DE FRANCIA

1. Introduction. The following maximal operator has arisen in work of C. Fefferman [17] and A. Córdoba [10, 11] on the L^p boundedness of the Bochner-Riesz spherical summation multipliers in \mathbb{R}^n . Let $\delta > 0$ be small and denote by \mathscr{R}_{δ} the collection of all rectangular parallelopipeds in \mathbb{R}^n , regardless of orientation, which contain the origin and have one side of length r and n-1 sides of lengths δr , for all r > 0. Define

$$M_{\delta}f(x) = \sup_{R \in \mathscr{R}_{\delta}} |R|^{-1} \int_{R} |f(x-y)| \, dy.$$

The fundamental question concerning M_{δ} is whether the inequality

$$\|M_{\delta}f\|_{n} \leq C \|\log \delta\|^{\beta} \|f\|_{n} \tag{1.1}$$

holds for some β , $C < \infty$ as $\delta \rightarrow 0$. Córdoba [10] has established this when n = 2, and has obtained certain partial results in higher dimensions. Our first result is a sharper but still partial one. First, let us reformulate (1.1) by conjecturing that

$$\|M_{\delta}f\|_{p} \leq C \|\log \delta\|^{\beta} \delta^{-\alpha} \|f\|_{p}, \qquad 1
(1.2)$$

for some β , $C < \infty$ depending only on *n* and *p*, where $\alpha = n/p - 1$.

Since M_{δ} is bounded by $C\delta^{1-n}$ times the Hardy-Littlewood maximal function, (1.2) follows from (1.1) by interpolating between p = 1 and p = n. Conversely, this power α is best possible, as may be seen by taking f to be the characteristic function of a ball.

PROPOSITION. The inequality (1.2) holds in \mathbb{R}^n for all 1 .

For $p \leq 2$, this is the partial result of Córdoba [11] alluded to above.

What is striking about this proposition is its relationship to the best bounds currently known concerning Bochner-Riesz multipliers. In dimension $n \ge 3$ the full conjectured mapping properties of those multipliers are known to hold for all $p \ge 2(n + 1)/(n - 1)$. Work of Córdoba and Carbery [3, 4] suggests strongly that

Received July 16, 1985. First author supported in part by N.S.F. grant. Third author supported in part by C.A.I.C.Y.T. Project No. 2805/83.