THE EXPLICIT RECIPROCITY LAW IN LOCAL CLASS FIELD THEORY

EHUD DE SHALIT

§1. Introduction. In this paper we prove an explicit reciprocity law that was conjectured by R. Coleman [C2]. It generalizes the explicit reciprocity laws of Artin-Hasse, Iwasawa and Wiles (see bibliography) by giving a *complete* formula for the norm residue symbol on Lubin-Tate groups. We also make some remarks about a larger class of Lubin-Tate groups to which our method applies, and the "Kummer theory" of such groups.

Let k be a finite extension of Q_p . Let π be a uniformizer of k, \mathscr{O} and $\not{\rho}$ its valuation ring and ideal, and $\kappa = \mathscr{O} / \rho$ the residue field. Let q be the number of elements in κ .

Let \mathscr{F}_{π} be the collection of power series l(X) in $\mathscr{O}[[X]]$ satisfying

(i)
$$l(X) = \pi X + \cdots$$

(ii)
$$l(X) \equiv X^q \mod \pi.$$

As is well known, Lubin and Tate associated with any $l \in \mathscr{F}_{\pi}$ a certain one dimensional formal group F_l over \mathscr{O} . Write $[+]_l$ for its addition and $[a]_l$ for the endomorphism whose differential is a. Thus $l = [\pi]_l$. When l varies, the groups F_l are isomorphic to each other over \mathscr{O} . If we let π vary too, any two Lubin-Tate groups become (weakly) isomorphic over \mathscr{O}_K , where K is the completion of the maximal unramified extension of k.

The π^n -division points of F_l form a cyclic \mathscr{O} -module of order q^n denoted W_l^n . We let $\tilde{W}_l^n = W_l^n - W_l^{n-1}$ be the *primitive* π^n division points. Then the tower of fields* $k_{\pi}^n = k(W_l^n)$ is totally ramified abelian over k, $[k_{\pi}^n:k] = (q-1)q^{n-1}$, and any element of \tilde{W}_l^n is a prime element of k_{π}^n . As the notation suggests, k_{π}^n depends on π , but not on $l \in \mathcal{F}_{\pi}$. Let $W_l = UW_l^n$.

The Kummer pairing

$$(,)_{n,l}: F_l(\not_n) \times (k_\pi^n)^x \to W_l^n \tag{1}$$

 $(\not_n$ denotes the valuation ideal of k_π^n) is defined as follows. For $\alpha \in \not_n$ and $\beta \in (k_\pi^n)^x$ choose *a* in the algebraic closure of *k* such that $[\pi^n](a) = \alpha$. Let σ_β be the Artin symbol of β . Then (dropping the reference to *l*)

$$(\alpha, \beta)_n = \sigma_\beta(a)[-]a.$$

It is well defined, \mathcal{O} -linear in the first variable and linear in the second.

Received February 6, 1985.

^{*}Our notation differs from [W] and [C2], where k_{π}^{n} is indexed by n-1, etc.