THE EXPLICIT RECIPROCITY LAW IN LOCAL CLASS FIELD THEORY

EHUD DE SHALIT

§1. Introduction. In this paper we prove an explicit reciprocity law that was conjectured by R. Coleman [C2]. It generalizes the explicit reciprocity laws of Artin-Hasse, Iwasawa and Wiles (see bibliography) by giving a complete formula for the norm residue symbol on Lubin-Tate groups. We also make some remarks about a larger class of Lubin-Tate groups to which our method applies, and the "Kummer theory" of such groups.
Let k be a finite extension of Q_{p}. Let π be a uniformizer of k, \mathcal{O} and h its valuation ring and ideal, and $\kappa=\mathscr{O} / \rho$ the residue field. Let q be the number of elements in κ.

Let \mathscr{F}_{π} be the collection of power series $l(X)$ in $\mathscr{O}[[X]]$ satisfying

$$
\begin{align*}
& l(X)=\pi X+\cdots \tag{i}\\
& l(X) \equiv X^{q} \bmod \pi \tag{ii}
\end{align*}
$$

As is well known, Lubin and Tate associated with any $l \in \mathscr{F}_{\pi}$ a certain one dimensional formal group F_{l} over \mathcal{O}. Write $[+]_{l}$ for its addition and $[a]_{l}$ for the endomorphism whose differential is a. Thus $l=[\pi]_{l}$. When l varies, the groups F_{l} are isomorphic to each other over \mathscr{O}. If we let π vary too, any two Lubin-Tate groups become (weakly) isomorphic over \mathscr{O}_{K}, where K is the completion of the maximal unramified extension of k.

The π^{n}-division points of F_{l} form a cyclic \mathscr{O}-module of order q^{n} denoted W_{l}^{n}. We let $\tilde{W}_{l}^{n}=W_{l}^{n}-W_{l}^{n-1}$ be the primitive π^{n} division points. Then the tower of fields* $k_{\pi}^{n}=k\left(W_{l}^{n}\right)$ is totally ramified abelian over $k,\left[k_{\pi}^{n}: k\right]=(q-1) q^{n-1}$, and any element of \tilde{W}_{l}^{n} is a prime element of k_{π}^{n}. As the notation suggests, k_{π}^{n} depends on π, but not on $l \in \mathscr{F}_{\pi}$. Let $W_{l}=U W_{l}^{n}$.

The Kummer pairing

$$
\begin{equation*}
(,)_{n, l}: F_{l}\left(/_{n}\right) \times\left(k_{\pi}^{n}\right)^{x} \rightarrow W_{l}^{n} \tag{1}
\end{equation*}
$$

(μ_{n} denotes the valuation ideal of k_{π}^{n}) is defined as follows. For $\alpha \in h_{n}$ and $\beta \in\left(k_{\pi}^{n}\right)^{x}$ choose a in the algebraic closure of k such that $\left[\pi^{n}\right](a)=\alpha$. Let σ_{β} be the Artin symbol of β. Then (dropping the reference to l)

$$
(\alpha, \beta)_{n}=\sigma_{\beta}(a)[-] a .
$$

It is well defined, \mathscr{O}-linear in the first variable and linear in the second.
*Our notation differs from [W] and [C2], where k_{π}^{n} is indexed by $n-1$, etc.

