TORSION POINTS ON ELLIPTIC CURVES OVER ALL QUADRATIC FIELDS

S. KAMIENNY

§1. Introduction. In [6] we gave a criterion for the nonexistence of a pair (E, P) consisting of an elliptic curve E and a rational point P of order p ($p \equiv 1 \pmod{4}$) defined over the real quadratic field $Q(\sqrt{p})$. Unfortunately, the prime p = 17 was exceptional for that work. We were, thus, unable to rule out the existence of an elliptic curve with a 17-torsion point rational over $Q(\sqrt{17})$. In this paper we show not only that there is no elliptic curve with a rational point of order 17 defined over $Q(\sqrt{17})$, but we also show that there is no elliptic curve with a rational point of order 17 defined over $Q(\sqrt{17})$, but we also show that there is no elliptic curve with a rational point of order 17 defined over any quadratic field. In fact, we actually show that there is no elliptic curve with a rational point of order p defined over any quadratic field when p = 17, 19, 23, 29, or 31. The key feature that these primes have in common is the existence of a nonhyperelliptic quotient (of genus > 2) of $X_1(p)$ whose jacobian has finite Mordell-Weil group over Q. There are a few other values of p (p = 41, 47, 59, and 71) that may enjoy this property, but to verify that they actually do seems to require the help of a computer.

The possibility of proving the result described above was suggested to me by a letter from B. Mazur to A. Ogg [10] about the arithmetic of Shimura curves. I would like to thank Barry Mazur for making a copy of the letter available to me. In addition, I would like to thank David Rohrlich and Chad Schoen for their assistance in verifying that the curves in question are not hyperelliptic.

§2. Modular curves and their jacobians. Let p be a prime number, and let $Y_0(p)_{/Q}$ be the curve over Q that classifies isomorphism classes of elliptic curves together with a rational subgroup of order p. Denote by $X_0(p)_{/Q}$ the complete curve obtained by adjoining the curves 0 and ∞ to $Y_0(p)_{/Q}$. Similarly, let $Y_1(p)_{/Q}$ be the curve that classifies isomorphism classes of elliptic curves together with a rational point of order p, and let $X_1(p)_{/Q}$ be the complete curve obtained by adjoining the $x_1(p)_{/Q}$ be the complete curve obtained by adjoining the p-1 curve $X_1(p)$ be the complete curve obtained by adjoining the p-1 curve $X_1(p)$ is naturally a cyclic cover of $X_0(p)$ of degree (p-1)/2. The covering map $X_1(p) - \rightarrow X_0(p)$ is given by sending an elliptic curve and a point to the elliptic curve and the subgroup generated by that point. For an integer n dividing (p-1)/2 we let $X^{(n)}(p)$ denote the unique covering of $X_0(p)$ of degree n that is intermediate to the covering $X_1(p) - \rightarrow X_0(p)$. The curve $X^{(n)}(p)$ has 2n curves, half of them rational over Q. Finally, we let $J_0(p)$ (respectively, $J_1(p)$, $J^{(n)}(p)$) denote the jacobian of $X_0(p)$ (respectively, $X_1(p)$, $X^{(n)}(p)$).

Received February 19, 1985. Research partially supported by an N.S.F. grant.