TORSION POINTS ON ELLIPTIC CURVES OVER ALL QUADRATIC FIELDS

S. KAMIENNY

§1. Introduction. In [6] we gave a criterion for the nonexistence of a pair (E, P) consisting of an elliptic curve E and a rational point P of order p ($p \equiv 1$ $(\bmod 4))$ defined over the real quadratic field $Q(\sqrt{p})$. Unfortunately, the prime $p=17$ was exceptional for that work. We were, thus, unable to rule out the existence of an elliptic curve with a 17 -torsion point rational over $\mathbf{Q}(\sqrt{17})$. In this paper we show not only that there is no elliptic curve with a rational point of order 17 defined over $\mathbf{Q}(\sqrt{17})$, but we also show that there is no elliptic curve with a rational point of order 17 defined over any quadratic field. In fact, we actually show that there is no elliptic curve with a rational point of order p defined over any quadratic field when $p=17,19,23,29$, or 31 . The key feature that these primes have in common is the existence of a nonhyperelliptic quotient (of genus >2) of $X_{1}(p)$ whose jacobian has finite Mordell-Weil group over Q . There are a few other values of $p(p=41,47,59$, and 71$)$ that may enjoy this property, but to verify that they actually do seems to require the help of a computer.

The possibility of proving the result described above was suggested to me by a letter from B. Mazur to A. Ogg [10] about the arithmetic of Shimura curves. I would like to thank Barry Mazur for making a copy of the letter available to me. In addition, I would like to thank David Rohrlich and Chad Schoen for their assistance in verifying that the curves in question are not hyperelliptic.
§2. Modular curves and their jacobians. Let p be a prime number, and let $Y_{0}(p)_{/ Q}$ be the curve over Q that classifies isomorphism classes of elliptic curves together with a rational subgroup of order p. Denote by $X_{0}(p)_{/ Q}$ the complete curve obtained by adjoining the cusps 0 and ∞ to $Y_{0}(p)_{/ Q}$. Similarly, let $Y_{1}(p)_{/ Q}$ be the curve that classifies isomorphism classes of elliptic curves together with a rational point of order p, and let $X_{1}(p)_{/ Q}$ be the complete curve obtained by adjoining the $p-1$ cusps. The curve $X_{1}(p)$ is naturally a cyclic cover of $X_{0}(p)$ of degree $(p-1) / 2$. The covering map $X_{1}(p) \rightarrow-X_{0}(p)$ is given by sending an elliptic curve and a point to the elliptic curve and the subgroup generated by that point. For an integer n dividing $(p-1) / 2$ we let $X^{(n)}(p)$ denote the unique covering of $X_{0}(p)$ of degree n that is intermediate to the covering $X_{1}(p)$ $--\rightarrow X_{0}(p)$. The curve $X^{(n)}(p)$ has $2 n$ cusps, half of them rational over Q . Finally, we let $J_{0}(p)$ (respectively, $\left.J_{1}(p), J^{(n)}(p)\right)$ denote the jacobian of $X_{0}(p)$ (respectively, $\left.X_{1}(p), X^{(n)}(p)\right)$. The abelian variety $J^{(n)}(p)$ has good reduction at

