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ZARISKI DECOMPOSITION OF DIVISORS ON
ALGEBRAIC VARIETIES

STEVEN D. CUTKOSKY

Introduction. In his article [Z] Zariski solved the Riemann-Roch problem for
high multiples of an effective divisor on a smooth projective surface. Zariski
needed a decomposition of an effective divisor D into a numerically effective
Q-divisor A, and an effective Q-divisor F such that A%nA) = h%(nD) whenever n
is a positive integer for which nA is an integral divisor. Such a decomposition is
called a Zariski decomposition.

In this paper the question of when an effective divisor on a smooth projective
r-dimensional variety has a Zariski decomposition is investigated. The main
result is an example of a divisor D on a 3-fold V with D-dimension k(D, V) = 3,
and such that for any birational morphism f: V" — V the pullback f*(D) does
not have a Zariski decomposition. This provides a counter example to a
conjecture of Fujita given in [F2]. However, we show that divisors with
D-dimension 1 or 2 always have a Zariski decomposition after taking their
pullback by a suitable birational morphism.

The main result of section 2 is a proof that the canonical ring of a 3-fold V of
general type is finitely generated if there is a canonical divisor K on ¥V, and a
birational morphism f: ¥'— ¥ such that f*(K) has a Zariski decomposition.
This was essentially proven by Benveniste in [B], but we were able to show that
some restrictions Benveniste placed on the intersection theory of the prime
components of K are always satisfied by a Zariski decomposition.
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Notations. All varieties are assumed to be projective and to be defined
over C.
Let V be a smooth variety. Let 2, A be irreducible subvarieties. Define:

0 if A¢Q

dy(Q) =
orda®h) {r if A has multiplicity r in 9.

Let D be a divisor on V. k(D, V) is the D-dimension of D, as defined by litaka
[I]. ~ denotes linear equivalence. = denotes numeric equivalence. Z-divisors,
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