ON A REMARK OF O'NEILL

AKHIL RANJAN

§0. Introduction. Let $S^n(r)$ denote the round sphere of radius r in \mathbb{R}^{n+1} and S^n denote $S^n(1)$. Let $\pi: S^n \to B$ be a Riemannian submersion and $\beta: \mathbb{R} \to B$ a unit speed geodesic. Let T and A be the structural tensors of π as introduced in [1] by O'Neill. In [2] O'Neill defines the norm $\alpha(\beta)$ of A along the geodesic β to be the maximum of $|A_xy|$ for x, y unit orthonormal vectors tangent to B at a point of β with the additional condition that one of them (say x for definiteness) be tangential to β .

Towards the end he remarks (in [2]) that if for every geodesic β , $\alpha(\beta) \le 1$, then "the geodesics of B have essentially the same conjugacy properties as for $\mathbb{C}P^n$ or $\mathbb{C}P^n$." In this note we wish to observe that

- (1) $\alpha(\overline{\beta}) \le 1$ implies that the fibres of π are totally geodesic so that B is in fact isometric to one of the spaces $\mathbb{C}P^n$, $\mathbb{Q}P^n$ or $S^{8}(\frac{1}{2})$. (See [3].)
- (2) It is enough to start with a Riemannian foliation of S^n i.e., a foliation with "bundle-like" metric and assume that $\alpha(\beta) \le 1$ for horizontal geodesics to conclude that the leaves are totally geodesic and hence we do have a global Riemannian submersion of S^n .
- (3) Hence if we start with a Riemannian foliation which is not obtainable by a global Riemannian submersion, then $\alpha(\beta) \le 1$ will not be satisfied for all horizontal geodesics β and such foliations of course exist. Take for example a nowhere vanishing Killing vector field on S^{2n+1} which admits noncompact orbits.
- §1. Equation $\{2\}$ of O'Neill. Let $\pi: M \to B$ be a Riemannian submersion and T and A its structural tensors. Then equation $\{2\}$ of O'Neill as given in [1] states that

$$\langle R_{XV}Y, W \rangle = \langle (\nabla_X T)_V W, Y \rangle + \langle (\nabla_V A)_X Y, W \rangle$$
$$- \langle T_V X, T_W Y \rangle + \langle A_X V, A_Y W \rangle$$

where X, Y are horizontal and V, W the vertical vector fields. Let β be a horizontal geodesic and $\{V_i\}_{i=1}^k$ a parallel orthonormal frame of vertical fields along β (parallel under $\hat{\nabla}$, the induced connection on the verticle subbundle). Put $\beta' = X$.

Received February 20, 1985.