WEAK GLOBAL TORELLI THEOREM FOR CERTAIN WEIGHTED PROJECTIVE HYPERSURFACES

MASA-HIKO SAITO

DEDICATED TO THE MEMORY OF PROFESSOR TAKEHIKO MIYATA

0. Introduction. In this paper, we shall study the weak global Torelli problem for hypersurfaces in weighted projective spaces. Among these hypersurfaces, we shall consider the following two types;

(I) A k-sheeted branched covering of P^r , (cf. §4).

(II) A Veronese double cone, (or a hyperelliptic fibre space over P'), (cf. §10).

Let X be a nonsingular projective manifold of dimension r with an ample line bundle. Then its rth primitive cohomology $H^r(X, \mathbb{Z})_0$ has a (pure) Hodge structure of weight r. Let us assume that the moduli space M of X exists and that we can define a period map (associated to its middle cohomology) $p: M \to G_{\mathbb{Z}} \setminus D$. Then the weak global Torelli problem for X can be stated as follows.

WEAK GLOBAL TORELLI PROBLEM. Does the period map have degree one onto its image?

In a notable paper [5], Donagi proved that the weak global Torelli theorem holds for almost all hypersurfaces in P^N . Inspired by Donagi's work, we extend his result to quasismooth weighted projective hypersurfaces.

As in [5], the main tool in this paper is the "infinitesimal variation of Hodge structures (abbreviated by IVHS)," which was introduced by Carlson-Griffiths [1]. We refer the reader to the introduction of [5] for the *Principle of Prolongation*. (See also [8].) We begin by outlining the results needed to prove the weak global Torelli theorem. First of all, we prove the existence of the moduli space M in some sense and define a period map $p: M \rightarrow G_Z \setminus D$. Secondly we prove that the degree of the period map p, that is, the image of the period map contains smooth points of $G_Z \setminus D$. Fourthly we prove the *Local Torelli theorem* to show that the period map has a finite degree. Lastly we prove the following hypothesis.

MAIN HYPOTHESIS. At a generic point of the moduli M the IVHS determines the isomorphism class of the variety.

The main results in this paper are as follows;

Received October 10, 1984.