VARIETIES WITH SMALL DUAL VARIETIES II

LAWRENCE EIN

§0. Introduction. Let X be an irreducible n dimensional closed subvariety of \mathbf{P}^{N} . Let C_{X} be the conormal variety of X ([15]). There is a natural projection map $p_{2}: C_{X} \to \mathbf{P}^{N^{*}}$. $p_{2}(C_{X}) = X^{*}$ is called the dual variety of X. X is said to be reflexive if the map $p_{2}: C_{X} \to X^{*}$ is separable ([15]). If X is reflexive, then C_{X} is also the conormal variety of X* ([13]). In particular, $(X^{*})^{*} = X$.

In the following we shall assume that X is a nonlinear reflexive projective n-fold in \mathbf{P}^N . A. Landman defined the defect of X to be $def(X) = N - 1 - \dim X^*$. For most examples X^* is a hypersurface and hence def(X) = 0. The purpose of this paper is to investigate those varieties with positive defect. Assume that def(X) = k > 0. Let H be a general tangent hyperplane of X. The contact locus of H with X is a k-plane L in X. In [4] we show that $N_{L/X}$, the normal sheaf of L in X, is isomorphic to $N_{L/X}^* \otimes \mathscr{O}_L(1)$. If T is a line in L, then $N_{L/X}|_T = ((n-k)/2)\mathscr{O}_T \oplus ((n-k)/2)\mathscr{O}_T(1)$. In this paper we shall investigate the deformations of L. Zak and Landman proved that $def(X) \le n - 2$. In 3.1, we show that if def(X) = n - 2 ($n \ge 3$), then X is a scroll. In §4, we show that if $def(X) = k \ge n/2$, then X is a $\mathbf{P}^{(n+k)/2}$ -bundle over a (n-k)/2-fold.

Mumford showed that if X is the Plücker embedding of G(2, 2m + 1) $(m \ge 2)$, then def(X) = 2 ([22]). A. Landman and M. Reid observed that if X is a \mathbf{P}^m -bundle over a (n - m)-fold such that the fibers are embedded linearly, then def $(X) \ge 2m - n$ when 2m > n.

In §5, we show that if X is a *n*-fold with $n \le 6$ and def(X) = k > 0, then X is one of the following varieties:

(a) X is the Plücker embedding of G(2, 5).

(b) X is a hyperplane section of G(2, 5).

(c) X is a $\mathbf{P}^{(n+k)/2}$ -bundle over a (n-k)/2-fold.

Throughout the paper, we shall assume that the base field K is algebraically closed and char $K \neq 2$. We are using the results from §2 of [4]. Though we assume that the base field is the complex numbers in [4], those results and their proofs in §2 remain true under the condition that X is reflexive and char $K \neq 2$.

Acknowledgement. I would like to thank Steve Kleiman for many helpful discussions and encouragements.

Received December 6, 1984. Research partially supported by a N.S.F. grant.