VARIETIES WITH SMALL DUAL VARIETIES II

LAWRENCE EIN

§0. Introduction. Let X be an irreducible n dimensional closed subvariety of \mathbf{P}^{N}. Let C_{X} be the conormal variety of $X([15])$. There is a natural projection map $p_{2}: C_{X} \rightarrow \mathbf{P}^{N^{*}} . p_{2}\left(C_{X}\right)=X^{*}$ is called the dual variety of $X . X$ is said to be reflexive if the map $p_{2}: C_{X} \rightarrow X^{*}$ is separable ([15]). If X is reflexive, then C_{X} is also the conormal variety of $X^{*}([13])$. In particular, $\left(X^{*}\right)^{*}=X$.
In the following we shall assume that X is a nonlinear reflexive projective n-fold in \mathbf{P}^{N}. A. Landman defined the defect of X to be $\operatorname{def}(X)=N-1-$ $\operatorname{dim} X^{*}$. For most examples X^{*} is a hypersurface and hence $\operatorname{def}(X)=0$. The purpose of this paper is to investigate those varieties with positive defect. Assume that $\operatorname{def}(X)=k>0$. Let H be a general tangent hyperplane of X. The contact locus of H with X is a k-plane L in X. In [4] we show that $N_{L / X}$, the normal sheaf of L in X, is isomorphic to $N_{L / X}^{*} \otimes \mathscr{O}_{L}(1)$. If T is a line in L, then $\left.N_{L / X}\right|_{T}=((n-k) / 2) \mathscr{O}_{T} \oplus((n-k) / 2) \mathscr{O}_{T}(1)$. In this paper we shall investigate the deformations of L. Zak and Landman proved that $\operatorname{def}(X) \leqslant n-2$. In 3.1, we show that if $\operatorname{def}(X)=n-2(n \geqslant 3)$, then X is a scroll. In $\S 4$, we show that if $\operatorname{def}(X)=k \geqslant n / 2$, then X is a $\mathbf{P}^{(n+k) / 2}$-bundle over a $(n-k) / 2$-fold.

Mumford showed that if X is the Plücker embedding of $G(2,2 m+1)(m \geqslant 2)$, then $\operatorname{def}(X)=2$ ([22]). A. Landman and M. Reid observed that if X is a \mathbf{P}^{m}-bundle over a $(n-m)$-fold such that the fibers are embedded linearly, then $\operatorname{def}(X) \geqslant 2 m-n$ when $2 m>n$.
In $\S 5$, we show that if X is a n-fold with $n \leqslant 6$ and $\operatorname{def}(X)=k>0$, then X is one of the following varieties:
(a) X is the Plücker embedding of $G(2,5)$.
(b) X is a hyperplane section of $G(2,5)$.
(c) X is a $\mathbf{P}^{(n+k) / 2}$-bundle over a $(n-k) / 2$-fold.

Throughout the paper, we shall assume that the base field K is algebraically closed and char $K \neq 2$. We are using the results from $\S 2$ of [4]. Though we assume that the base field is the complex numbers in [4], those results and their proofs in $\S 2$ remain true under the condition that X is reflexive and char $K \neq 2$.

Acknowledgement. I would like to thank Steve Kleiman for many helpful discussions and encouragements.

