CUSP FORMS ASSOCIATED TO LOXODROMIC ELEMENTS OF KLEINIAN GROUPS

IRWIN KRA

Let α and β be two distinct points in $\mathbb{C} \cup \{\infty\}$. Let

$$g_{\alpha,\beta}(z) = \frac{\alpha - \beta}{(z - \alpha)(z - \beta)}, \qquad z \in \mathbb{C} \cup \{\infty\}.$$
(0.1)

Observe that $g_{\alpha,\beta}$ is the unique (up to constant multiple) holomorphic automorphic form of weight (-2) for the one parameter group

$$\{A \in PSL(2, \mathbb{C}); A\alpha = \alpha, A\beta = \beta \}.$$

Let Γ be a finitely generated nonelementary Kleinian group with region of discontinuity Ω and limit set Λ . Fix an integer $q \ge 2$. Let $\mathbf{A}_q(\Omega, \Gamma)$ denote the space of cusp forms for Γ of weight (-2q), the space of q-forms, for short.

Let $A \in \Gamma$ be loxodromic with attractive fixed point α and repulsive fixed point β . Let $\Gamma_0 = \langle A \rangle$ be the cyclic subgroup generated by A. Form the *relative* Poincaré series

$$\varphi_{A} = \theta_{\Gamma_{0} \setminus \Gamma} g_{\alpha,\beta}^{q};$$

that is,

$$\varphi_{A}(z) = \sum_{\gamma \in \Gamma_{0} \setminus \Gamma} g_{\alpha,\beta}^{q}(\gamma z) \gamma'(z)^{q}, \qquad z \in \Omega.$$
(0.2)

We call φ_A the relative Poincaré series associated with the loxodromic element A of Γ . It is easy to see that $\varphi_A \in \mathbf{A}_q(\Omega, \Gamma)$. This paper considers two closely related problems. Let A_1, \ldots, A_N be N loxodromic elements of Γ and let s_1, \ldots, s_N be complex numbers. Let

$$\varphi = \sum_{j=1}^{N} s_j \varphi_{A_j} \,. \tag{0.3}$$

(A) Find necessary and sufficient computable (algebraic) conditions for φ to be identically zero on Ω .

(B) Find necessary and sufficient conditions for $\varphi_{A_1}, \ldots, \varphi_{A_N}$ to be linearly independent.

Received October 26, 1984. Research partially supported by NSF grant MCS 8102621.