$SL(2, \mathbb{C})$, H^1 AND SYMMETRIC TENSORS

WALTER PARRY

The purpose of this paper is to prove a theorem conjectured by Irwin Kra which is important for the study of relative Poincare series associated to loxodromic elements of Kleinian groups (see [1]). The following is needed to state the theorem. For every positive even integer d, let Π_d denote the C-space of all polynomials over C of degree at most d. Make Π_d into a right PSL(2, C)-module so that if $\binom{r}{t}$ $\binom{s}{t} \in SL(2, \mathbb{C})$ represents $g \in PSL(2, \mathbb{C})$ and $P(z) \in \Pi_d$, then

$$P(z)g = P(g(z))(tz + u)^{d}.$$

THEOREM 0.1. Let Γ be a nonelementary Kleinian group. Let χ be a cocycle for the Eilenberg-MacLane cohomology group $H^1(\Gamma,\Pi_d)$. Assume for every loxodromic (eigenvalues having absolute value not 1) $g \in \Gamma$ that there exists a polynomial $P \in \Pi_d$ such that

$$\chi(g) = Pg - P.$$

Then χ is a coboundary.

This theorem follows from Theorem 1.3 which is somewhat more general. I would like to thank Irwin Kra for introducing me to this problem and for many discussions concerning it. I would also like to thank Michio Kuga and Chih-Han Sah for numerous enlightening discussions (on numerous topics).

§1. The theorem and its proof. For what follows, it seems preferable to lift the group of Theorem 0.1 to $SL(2, \mathbb{C})$ and to replace the (right) module by the (left) symmetric tensor module. So, let S denote the symmetric tensor algebra of \mathbb{C}^2 . Let S_d denote its homogeneous component of degree d, and identify S_1 with \mathbb{C}^2 .

It is also useful to have a nondegenerate bilinear form on S_d for what follows. The one used here appears in §8.2 of [3]. This form, denoted by \langle , \rangle , is determined by the equation

$$\langle u^d, v^d \rangle = \det(u, v)^d$$
 (1.1)

for every $u, v \in S_1 = \mathbb{C}^2$. This gives a nondegenerate bilinear form on S_d which is symmetric if d is even and antisymmetric if d is odd. Letting * denote adjoint with respect to this form and letting $\rho_d: \mathrm{GL}(2,\mathbb{C}) \to \mathrm{GL}(S_d)$ denote the symmetric