# SUPPLEMENT TO "VARIATION OF MIXED HODGE STRUCTURE ARISING FROM FAMILY OF LOGARITHMIC DEFORMATIONS II: CLASSIFYING SPACE" 

MASAHIKO SAITO, YUJI SHIMIZU, and SAMPEI USUI

In this note, we will define a graded polarization (abbreviated as GP) of the mixed Hodge structure (abbreviated as MHS) on $H^{n}(X-Y, \mathrm{Q})$, where $X$ is a smooth projective variety over $\mathbf{C}$ and $Y$ is a (reduced) normal crossing divisor (abbreviated as NCD) on $X$, and give some supplements to [U.2]. This note is based on a small meeting of the three authors at RIMS, 1-6 Oct. '84.

1. Graded polarization on $H^{n}(X-Y, \mathbf{Q})$. Let $X$ and $Y$ be as above and set $r:=\operatorname{dim} X$. Locally on $X, Y$ is a union of its irreducible components; $Y=\bigcup_{i \in I} Y_{i}$. Set $Y_{j}:=\bigcap_{j \in J} Y_{j}$ for a subset $J \subset I, \tilde{Y}^{s}:=\amalg_{J} Y_{J}$ where $J$ runs the subsets of $I$ with $\# J=s(\geqslant 1)$ and $\tilde{Y}^{0}=X$. These $\tilde{Y}^{s}$ patch together and have global meaning. (cf. II (3.1.4) in [D.1])

Next, choose a polarization on $X \omega \in H^{2}(X, \mathbf{Z}) \cap H^{1,1}(X)$ (i.e., the cohomology class of a very ample invertible sheaf). Then $\omega$ induces a polarization $\omega_{J}$ of $Y_{J}$ and also a polarization of $\tilde{Y}^{s}, \omega_{s}:=\bigoplus_{\# J=s} \omega_{J} \in H^{2}\left(\tilde{Y}^{s}, \epsilon_{\mathbf{Z}}^{s}\right) \cap H^{1,1}\left(\tilde{Y}^{s}\right)$, where $\epsilon_{\mathbf{Z}}^{s}$ denotes the sheaf of orientations on $\tilde{Y}^{s}$. (cf. ibid.)

These data define a polarization of HS on $H^{m}\left(\tilde{Y}^{s}, \epsilon_{\mathrm{O}}^{s}\right)$ by the following well-known procedure in Kähler geometry. Let $\nu_{J}: H^{2(r-s)}\left(Y_{J}, \mathbf{Z}\right) \xrightarrow{\sim} \mathbf{Z}$ be the trace map with $\nu_{J}\left(\omega_{J}^{r-s}\right)=1(\# J=s)$ and set $\nu_{s}:=\sum_{\# J=s} \nu_{J}: H^{2(r-s)}\left(\tilde{Y}^{s}, \epsilon_{\mathrm{Z}}^{s}\right)$ $\rightarrow \mathbf{Z}$. Let $L$ denote the operator of "cup-product with $\omega_{s}$ " on $H^{*}\left(\tilde{Y}^{s}, \epsilon_{\mathbf{Z}}^{s}\right)$ and define

$$
P^{m}\left(\tilde{Y}^{s}, \epsilon_{\mathbf{Q}}^{s}\right):=\operatorname{Ker}\left(L^{(r-s)-m+1}: H^{m}\left(\tilde{Y}^{s}, \epsilon_{\mathbf{Q}}^{s}\right) \rightarrow H^{2(r-s)-m+2}\left(\tilde{Y}^{s}, \epsilon_{\mathbf{Q}}^{s}\right)\right)
$$

(the primitive part). Then by using the Lefschetz decomposition

$$
\begin{equation*}
H^{m}\left(\tilde{Y}^{s}, \epsilon_{\mathbf{Q}}^{s}\right)=\underset{a \geqslant 0}{\bigoplus} L^{a} P^{m-2 a}\left(\tilde{Y}^{s}, \epsilon_{\mathbf{Q}}^{s}\right) \tag{1.1}
\end{equation*}
$$

we can define a polarization $Q_{s}^{\prime}$ of HS on $H^{m}\left(\tilde{Y}^{s}, \epsilon_{\mathbf{Q}}^{s}\right)$ by the formula

$$
\begin{equation*}
Q_{s}^{\prime}(u, v):=\sum_{a}(-1)^{(m-2 a)(m-2 a+1) / 2} \nu_{s}\left(u_{m-2 a} \cup v_{m-2 a} \cup \omega_{s}^{(r-s)-(m-2 a)}\right) \tag{1:2}
\end{equation*}
$$

Received November 23, 1984.

