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LEBRUN’S NONREALIZABILITY THEOREM
IN HIGHER DIMENSIONS

HUGO ROSSI

1. Introduction. In this article we generalize the realizability criterion of
LeBrun [5] to CR twistor manifolds corresponding to higher dimensional
Riemannian manifolds. Associated to every Riemannian manifold (M, g) there is
a CR manifold (N,D), where/9 is the distribution defining the b equations of
the CR structure. If M is of dimension 3, N has the structure of a CR
hypersurface, but in higher dimensions this is no longer true. In fact, if

dimRM n, we have dimRN 3n- 4 and dimcD n- 1. Thus, if the CR
structure is induced by an embedding of N in d, the best we could have is
d 2n 3 and N realized as a submanifold of codimension n 2. Nevertheless
the realizability criterion of LeBrun still holds: N is everywhere locally realizable
if and only if (M, g) is conformal to a real-analytic Riemannian manifold. In
fact, the construction is, in some sense, easier if n > 3.

There is a fibration r"NM so that the fibers are compact complex
submanifolds of N isomorphic to quadrics in n-. If is the space of quadrics,
the metric thus defines a smooth map g" M. Under the hypothesis of
realizability we can, using the criterion of Boggess and Polking [1], embed N as a
closed submanifold of a complex manifold T with dim T 2n- 3, so that CR
functions on N extend to holomorphic functions on T. Let S be the space bf
compact complex submanifolds of T; S carries a natural complex structure [6]. A
cohomological calculation along the fibers of r-(0) verifies the condition [4] for
(r-(0)) to be a regular point of S. Then there is a natural smooth embedding of
M into S: (m)= (rr-l(m)). Now, following LeBrun’s argument, if n > 3, S is a
complexification of M, and there is a holomorphic map " S which extends
the "metric map" g" M . This proves the real-analyticity.
The aim of this work was to extend LeBrun’s ideas to produce a

nondegenerate CR hypersurface which is not realizable of dimension greater
than 5. Since [3] has examples of Levi signature (n, 1), the task is to find such an
example of Levi signature (p, q), p > q > 2. We have not found an example; the
best we can do is a hypersurface whose Levi form has signature (2,2), but has
one zero eigenvalue.
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