GEOMETRY OF A CATEGORY OF COMPLEXES AND ALGEBRAIC K-THEORY

V. A. HINICH and V. V. SCHECHTMAN

Introduction. It is well known (cf. [8]) that the group K_{0} of an abelian category \mathscr{A} can be described in terms of its derived category $D^{b}(\mathscr{A}): K_{0}(\mathscr{A})$ has the presentation by generators $[X], X \in \mathrm{Ob}(\mathscr{A})$, and relations $[X]+[Y]$ $=[Z]$ for X, Y, Z being included in an exact triangle

$$
X \rightarrow Y \rightarrow Z \rightarrow X[1] .
$$

The present notes arose from an attempt to invent an analogous description for higher K-groups $K_{i}(\mathscr{A}), i>0$.

For example, one could expect that in the definition of $K_{1}(\mathscr{A})$ would take part something like "exact triangles factored by exact octahedrons", etc. We show below (cf. Theorem 3.4) that in a sense this is really so.

Let us describe briefly the idea of our construction. One knows that the group K_{i} of a monoidal category M is the $(i+1)$-th homotopy group of its "classifying space" $B M$ (cf. [7]). One can imagine a monoidal category as "a group up to a canonical isomorphism", and its classifying space as an analogue of the classifying space of a group. Recall that for a group A the latter space is the simplicial set, whose set of n-simplices, $(B A)_{n}$, is just A^{n}, and the faces are defined by the formula

$$
d_{i}\left(a_{1}, \ldots, a_{n}\right)= \begin{cases}\left(a_{2}, \ldots, a_{n}\right) & \text { for } i=0 \\ \left(a_{1}, \ldots, a_{i}+a_{i+1}, \ldots, a_{n}\right) & \text { for } i=1, \ldots, n-1 \\ \left(a_{1}, \ldots, a_{n-1}\right) & \text { for } i=n .\end{cases}
$$

Similarly, the operation of cone in the category of complexes $C^{b}(\mathscr{A})$ is an analogue of the "division" $(x, y) \rightarrow\left(x^{-1} y\right)$ in a group $A .^{1}$ Further, note that one can describe the faces of $B A$ in other co-ordinates, in terms of division. Namely, one can put $B^{\prime} A=A^{n}$,

$$
\begin{aligned}
& d_{i}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{n}\right) \quad \text { for } \quad i \geqslant 1 \quad \text { and } \\
& d_{0}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}^{-1} a_{2}, \ldots, a_{1}^{-1} a_{n}\right),
\end{aligned}
$$

and one has an isomorphism $B^{\prime} A \cong B A$.

[^0]
[^0]: Received May 28, 1984.
 ${ }^{1}$ The role of the "associativity isomorphism" is played in $C^{b}(\mathscr{A})$ by the quasi-isomorphism of octahedron (see (1.1)).

