PLURI-CANONICAL DIVISORS ON KÄHLER MANIFOLDS II

MARC LEVINE

Introduction. In our paper [L] we proved the following theorem:

THEOREM. Let $p: X \to D$ be a smooth and proper map of a complex manifold X to a disk D, with connected fibers. Fix a positive integer m. Suppose that the fiber $X_0 = p^{-1}(0)$ is in the class $\mathscr E$ of Fujiki. Suppose further that the general element s of $H^0(X_0, \mathscr O_{X_0}(mK))$ has smooth divisor. Then the m-genus $P_m(p^{-1}(t))$ is constant over a neighborhood of 0 in D.

Here we will prove an extension of the above theorem to the case in which the general m-canonical divisor has singularities. More precisely, let s be a general element of $H^0(X_0, \mathscr{O}_{X_0}(mK))$, let Y be the m-fold covering of X_0 , contained in the canonical line bundle, and branched over (s). Let $f: Y^* \to Y$ be a resolution of singularities of Y such that the exceptional locus E is a divisor with normal crossing. Let ω be the dualizing sheaf on Y. Then Y has "mild" singularities if

- (1) Y is smooth in codimension one (i.e., (s) is reduced)
- (2) $f^*(\omega)$ is contained in the sheaf of forms with log poles $\Omega_{Y^*}^r\langle E \rangle$, $r = \dim(Y)$ For example, if (s) is a reduced divisor with normal crossing, then Y has "mild" singularities.

We prove here the following theorem:

THEOREM. Let $p: X \to D$ be a smooth and proper map of a complex manifold X to a disk D, with connected fibers. Fix a positive integer m. Suppose that X_0 is in $\mathscr E$, and suppose further that for a general element s of $H^0(X_0, \mathscr O_{X_0}(mK))$, the m-fold covering Y of X_0 branched along (s) has "mild" singularities. Then the m-genus $P_m(p^{-1}(t))$ is constant over a neighborhood of 0 in D.

Let $p: Z \to D$ be a smooth map of a complex manifold Z to a disk D, and let i be a parameter on D. We denote by Z_n the reduction of $Z \mod t^{n+1}$,

$$\mathscr{O}_{Z_n} = \mathscr{O}_Z / (t^{n+1}).$$

We define the sheaf of relative C^{∞} functions on Z_n , $\mathscr{E}_{Z_n}^{(0,0)}$, by

$$\mathscr{C}_{Z_{-}}^{(0,0)}=\mathscr{C}_{Z}^{\infty}/(t^{n+1},\bar{t}).$$

If U is a coordinate patch on Z, with coordinates (z, t), $z = (z_1, \ldots, z_d)$, and x is

Received April 16, 1984. Research partially supported by the NSF and the Max Planck Institute for Mathematics.