PLURI-CANONICAL DIVISORS ON KÄHLER MANIFOLDS II

MARC LEVINE

Introduction. In our paper [L] we proved the following theorem:
Theorem. Let $p: X \rightarrow D$ be a smooth and proper map of a complex manifold X to a disk D, with connected fibers. Fix a positive integer m. Suppose that the fiber $X_{0}=p^{-1}(0)$ is in the class \mathfrak{b} of Fujiki. Suppose further that the general element s of $H^{0}\left(X_{0}, \mathscr{O}_{X_{0}}(m K)\right)$ has smooth divisor. Then the m-genus $P_{m}\left(p^{-1}(t)\right)$ is constant over a neighborhood of 0 in D.

Here we will prove an extension of the above theorem to the case in which the general m-canonical divisor has singularities. More precisely, let s be a general element of $H^{0}\left(X_{0}, \mathcal{O}_{X_{0}}(m K)\right.$), let Y be the m-fold covering of X_{0}, contained in the canonical line bundle, and branched over (s). Let $f: Y^{*} \rightarrow Y$ be a resolution of singularities of Y such that the exceptional locus E is a divisor with normal crossing. Let ω be the dualizing sheaf on Y. Then Y has "mild" singularities if
(1) Y is smooth in codimension one (i.e., (s) is reduced)
(2) $f^{*}(\omega)$ is contained in the sheaf of forms with \log poles $\Omega_{Y^{*}}^{r}\langle E\rangle, r=\operatorname{dim}(Y)$

For example, if (s) is a reduced divisor with normal crossing, then Y has "mild" singularities.

We prove here the following theorem:
Theorem. Let $p: X \rightarrow D$ be a smooth and proper map of a complex manifold X to a disk D, with connected fibers. Fix a positive integer m. Suppose that X_{0} is in \mathfrak{b}, and suppose further that for a general element s of $H^{0}\left(X_{0}, \mathscr{O}_{X_{0}}(m K)\right)$, the m-fold covering Y of X_{0} branched along (s) has "mild" singularities. Then the m-genus $P_{m}\left(p^{-1}(t)\right)$ is constant over a neighborhood of 0 in D.

Let $p: Z \rightarrow D$ be a smooth map of a complex manifold Z to a disk D, and let \imath be a parameter on D. We denote by Z_{n} the reduction of $Z \bmod t^{n+1}$,

$$
\mathcal{O}_{Z_{n}}=\mathcal{O}_{Z} /\left(t^{n+1}\right) .
$$

We define the sheaf of relative C^{∞} functions on $Z_{n}, \mathscr{C}_{Z_{n}}^{(0,0)}$, by

$$
\mathscr{C}_{Z_{n}}^{(0,0)}=\mathscr{C}_{Z}^{\infty} /\left(t^{n+1}, \bar{t}\right) .
$$

If U is a coordinate patch on Z, with coordinates $(z, t), z=\left(z_{1}, \ldots, z_{d}\right)$, and x is

Received April 16, 1984. Research partially supported by the NSF and the Max Planck Institute for Mathematics.

