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SYMMETRY OF CONSTANT MEAN CURVATURE
HYPERSURFACES IN HYPERBOLIC SPACE

GILBERT LEVITT ano HAROLD ROSENBERG

Introduction. In a recent paper, M. Do Carmo and B. Lawson studied
hypersurfaces M of constant mean curvature in hyperbolic space [2]. They use
the Alexandrov reflection technique to study M given the asymptotic boundary
d,M. For example, one of their theorems says M is a horosphere when 9, M
reduces to a point. They also prove a Bernstein type theorem for minimal graphs.

In this paper we shall extend their results to other boundary conditions. We
prove an embedded M, of constant mean curvature, with d_ M a subset of a
codimension one sphere S, either is invariant by reflection in the hyperbolic
hyperplane H spanned by S or is a hypersphere. In the former case M is a
“bigraph” over H: it meets any geodesic orthogonal to H either not at all or
transversely in two points (one on each side of H) or tangentially on H.

As a corollary of this, when 9, (M) consists of two points p and ¢, then M is a
hypersurface of revolution about the geodesic joining p to q.

We also consider minimal immersed hypersurfaces M C H” with M regular at
co. When 0 M consists of two disjoint spheres S|, S, we prove M is a catenoid
or M is the union of the two hyperbolic planes spanned by S, and S,.

The principal techniques we use to obtain these results are the Alexandrov
reflection principle and R. Schoen’s adaptation of this to complete minimal
surfaces [4].

I. Definitions and notations. When we refer to plane, distance, line, etc. we
always mean the hyperbolic object in H"”. We work with the Poincaré model of
H": H" is the interior of the unit ball in R”. The asymptotic boundary of H" is
identified with the boundary of the unit ball and denoted by S(c0). Given
A C H", we denote by 04 the set of accumulation points of 4 in S(o0) and call
it the asymptotic boundary of A. When the context is clear, we will omit the
subscript 0.

Fix a hyperplane P, in H”. We have two natural coordinate systems. First, one
can use the geodesics orthogonal to P, to give each point coordinates (x, ) where
x € P, and ¢ is the distance from x to (x,¢). This system does not suit our
purposes because translation along one geodesic orthogonal to P, does not leave
invariant another such geodesic. Also this does not extend to a coordinate system
on S().

Instead we shall use the latitude-longitude system. More precisely, choose
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