SYMMETRY OF CONSTANT MEAN CURVATURE HYPERSURFACES IN HYPERBOLIC SPACE

GILBERT LEVITT and HAROLD ROSENBERG

Introduction. In a recent paper, M. Do Carmo and B. Lawson studied hypersurfaces M of constant mean curvature in hyperbolic space [2]. They use the Alexandrov reflection technique to study M given the asymptotic boundary $\partial_{\infty} M$. For example, one of their theorems says M is a horosphere when $\partial_{\infty} M$ reduces to a point. They also prove a Bernstein type theorem for minimal graphs.
In this paper we shall extend their results to other boundary conditions. We prove an embedded M, of constant mean curvature, with $\partial_{\infty} M$ a subset of a codimension one sphere S, either is invariant by reflection in the hyperbolic hyperplane H spanned by S or is a hypersphere. In the former case M is a "bigraph" over H : it meets any geodesic orthogonal to H either not at all or transversely in two points (one on each side of H) or tangentially on H.

As a corollary of this, when $\partial_{\infty}(M)$ consists of two points p and q, then M is a hypersurface of revolution about the geodesic joining p to q.

We also consider minimal immersed hypersurfaces $M \subset H^{n}$ with M regular at ∞. When $\partial_{\infty} M$ consists of two disjoint spheres S_{1}, S_{2} we prove M is a catenoid or M is the union of the two hyperbolic planes spanned by S_{1} and S_{2}.
The principal techniques we use to obtain these results are the Alexandrov reflection principle and R. Schoen's adaptation of this to complete minimal surfaces [4].
I. Definitions and notations. When we refer to plane, distance, line, etc. we always mean the hyperbolic object in H^{n}. We work with the Poincaré model of $H^{n}: H^{n}$ is the interior of the unit ball in R^{n}. The asymptotic boundary of H^{n} is identified with the boundary of the unit ball and denoted by $S(\infty)$. Given $A \subset H^{n}$, we denote by $\partial_{\infty} A$ the set of accumulation points of A in $S(\infty)$ and call it the asymptotic boundary of A. When the context is clear, we will omit the subscript ∞.

Fix a hyperplane P_{0} in H^{n}. We have two natural coordinate systems. First, one can use the geodesics orthogonal to P_{0} to give each point coordinates (x, t) where $x \in P_{0}$ and t is the distance from x to (x, t). This system does not suit our purposes because translation along one geodesic orthogonal to P_{0} does not leave invariant another such geodesic. Also this does not extend to a coordinate system on $S(\infty)$.

Instead we shall use the latitude-longitude system. More precisely, choose

[^0]
[^0]: Received June 30, 1984.

