
THE TOPOLOGY OF ISOSPECTRAL MANIFOLDS OF TRIDIAGONAL MATRICES

CARLOS TOMEI

§1. Introduction. In this paper, we study the topology of $M^n = M_{\lambda_1,\lambda_2,...,\lambda_n}$, the set of real, symmetric, tridiagonal $n \times n$ matrices with fixed eigenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_n$. The usual techniques (inverse algorithms, integrable systems [Moser]) provide a description for the subset consisting of matrices with nonzero off-diagonal entries with prescribed signs—such a set, in the case of $n \times n$ matrices, is diffeomorphic to \mathbb{R}^{n-1} . We first study the boundary of this set (sections 3 and 4) and then, from a regular *CW*-decomposition, obtain some global information. In particular, M is a compact manifold, whose Euler characteristic is explicitly calculated (section 2), orientable (section 4) and whose universal covering is \mathbb{R}^{n-1} .

We now sketch the results and some techniques for the case n = 3. The set of

Received June 8, 1984. Author's research was supported in part by NSF grant #MCS-8300568.