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WEIL DIVISORS ON NORMAL SURFACES

FUMIO SAKAI

In this note we prepare some basic results to study normal surfaces. We use the
intersection theory defined by Mumford [10]. We study the contraction criterion,
the projection formula, the Noether formula, the vanishing theorem, etc. We also
consider birational morphisms of normal surfaces. We shall introduce a minimal
model for a pair of a normal surface and a (-divisor on it. The author would like
to thank the referee for valuable suggestions.

Notation and conventions. A surface will mean an irreducible reduced compact
complex space of dimension 2. A divisor will mean a Weil divisor (i.e., a linear
combination of irreducible curves) unless otherwise specified. Let Y be a normal
surface. We denote by Div(Y) the group of divisors on Y. An element of
Div( Y, O)= Div(Y) (R) 13 is called a O-divisor. For a O-divisor D EaiCi where
the C are irreducible curves and ai O we write as

([ a] is the greatest integer

D E Oli) Ci (( a is the least integer > a).

We use "birational morphism" instead of bimeromorphic morphism. A resolution
is a birational morphism r" X---) Y where X is assumed smooth.

1. Intersection theory. Let Y be a normal surface. The intersection pairing
Div(Y,O) Div(Y,O)O is defined as follows ([8]). Let r: X- Y be a
resolution and let A ,1Ei denote the exceptional set of r. For a O-divisor D on
Y we define the inverse image r*D as

r*D + _aotiEi (1.1)

where D is the strict transform of D by rr and the rational numbers a are
uniquely determined by the equations" DEj + EoliEiEj = 0 for allj. Even if D is
integral, rr*D is in general a Q-divisor. For two O-divisors D and D’ the
intersection number DD’ is defined to be the rational number (rr*D)(r* D’).
The following is the normal surface version of the Grauert’s contraction

criterion theorem.
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