VARIATION OF MIXED HODGE STRUCTURE **ARISING FROM FAMILY OF LOGARITHMIC** DEFORMATIONS II: CLASSIFYING SPACE

SAMPEI USUI

Contents

In	troductio	n																				
1.	Variation	n of	f gr	ad	edl	Уľ	oola	ariz	ed	mi	ixec	l H	[od	ge	stru	icti	ure					. 852
2.	Classifyi	ng	spa	ice		•								•							•	. 856
3.	Extended	d h	oriz	zor	ıtal	su	ıbb	un	dle					•								. 862
4.	Period m	nap					•							•								. 867
Re	eferences						•	•								•		•	•			. 874

Introduction. This article is a continuation of [U.3].

Between the present article and [U.3], substantial progress has been made: the infinitesimal Torelli theorem for complements of "sufficiently ample" smooth divisors has been proved by Griffiths ([G.3]). We present here its precise statement for the reader's convenience.

Let X be a smooth, projective variety over C of dimension = n, and Y a smooth divisor on X. Denote $O_X(1) = O_X(Y)$, and by Σ the sheaf of first order differential operators on $O_X(1)$. Denote also by Δ the diagonal in $X \times X$, by \mathscr{I}_{Δ} its ideal, by $p_i: \Delta \to X$ the *i*-th projection (*i* = 1, 2), and by $\omega_{X \times X}$ the canonical invertible sheaf on $X \times X$.

(0.1) (Griffiths [G.3]). With the above notation, if

$$H^{q}\left(\left(\bigwedge^{q+1}\Sigma\right)\otimes O_{X}(-q)\right)=0 \qquad (1 \leq q \leq n-1) \quad and$$
$$H^{1}(\mathscr{I}_{\Delta}\otimes\omega_{X\times X}\otimes p_{1}^{*}O_{X}(1)\otimes p_{2}^{*}O_{X}(n-1))=0,$$

then the map

$$H^{1}(T_{X}(-\log Y)) \rightarrow \operatorname{Hom}(H^{0}(\Omega_{X}^{n}(\log Y)), H^{1}(\Omega_{Y}^{n-2}))$$

induced by contraction and the Poincaré residue is injective.

Received March 19, 1983.