HEAT EQUATION AND COMPACTIFICATIONS OF COMPLETE RIEMANNIAN MANIFOLDS

HAROLD DONNELLY AND PETER LI

1. Introduction. Let M be a complete Riemannian manifold whose Ricci curvature is bounded from below. A compactification \overline{M} of M is a compact Hausdorff space which contains M as a dense subspace. We assume that \overline{M} is first countable [6, p. 186]. In particular, for each $\bar{x} \in \overline{M}$ there exists a sequence $x_n \in M$ with $x_n \to \overline{x}$, where the arrow denotes convergence. If $f \in C(\overline{M})$, the space of continuous functions on \overline{M} , then f is uniquely determined by its restriction to M. The symbol \overline{M}_{∞} will denote the complement of M in \overline{M} . Given any $f \in C(\overline{M})$, one looks for functions $f(x,t) \in C(\overline{M} \times [0,\infty))$

satisfying the following three conditions:

(i)
$$\left(\frac{\partial}{\partial t} - \Delta\right) f(x, t) = 0 \qquad (x, t) \in M \times (0, \infty)$$

(ii)
$$f(x,0) = f(x) x \in M$$
 (1.1)

(iii)
$$f(x,t) = f(x) \qquad (x,t) \in \overline{M}_{\infty} \times [0,\infty).$$

Here Δ is the Laplacian associated to the Riemannian metric of M. Moreover, it is assumed that f(x,t) will be twice continuously differentiable in x and once continuously differentiable in t, for $(x,t) \in M \times (0,\infty)$. The parabolic problem (1.1) is overdetermined. In fact, since the Ricci curvature of M is bounded from below, one has uniqueness for the heat equation problem in the space of bounded continuous functions [4], [13]. This implies that f(x,t), for $(x,t) \in M \times$ $(0, \infty)$, is completely determined by the first two conditions of (1.1). There is at most one continuous extension to $\overline{M} \times (0, \infty)$. A priori, it may be impossible to prescribe the values f(x,t), for $(x,t) \in \overline{M}_{\infty} \times [0,\infty)$, as required by (iii).

The main purpose of this paper is to give a simple geometric criterion for the solvability of (1.1). If $x \in M$ and $\gamma > 0$, then $B(x, \gamma)$ will denote the geodesic ball of radius γ , centered at x. One defines the following:

(Ball Convergence Criterion) If
$$x_n \in M$$
 is a sequence with $x_n \to \overline{x} \in \overline{M}$, then for all $\gamma > 0$, $B(x_n, \gamma) \to \overline{x}$. (1.2)

Equivalently, one may require convergence for some $\gamma > 0$. Our main theorem is as follows:

Received November 26, 1983.