A SIMPLE CRITERION FOR LOCAL HYPERSURFACES TO BE ALGEBRAIC

JAY A. WOOD

Introduction. In this paper we give a necessary and sufficient condition for d pieces of hypersurface to be contained in an algebraic hypersurface of degree d.

Given d pieces of hypersurface $\gamma_1, \ldots, \gamma_d$ in (n + 1)-dimensional projective space P^{n+1} , suppose there is a line L_0 in P^{n+1} which intersects each of the γ_i transversely. Fix affine coordinates (x_0, \ldots, x_n) on P^{n+1} , and fix line coordinates $(m_1, \ldots, m_n, b_1, \ldots, b_n)$ (i.e., local coordinates on Gr(1, n + 1), the Grassmannian of all lines in P^{n+1}), where a line L is given by $x_k = m_k x_0 + b_k$, $k = 1, \ldots, n$. It can be assumed that L_0 has line coordinates $m_k = 0$, $b_k = 0$, for all k. For convenience, write $m = (m_1, \ldots, m_n)$, $b = (b_1, \ldots, b_n)$.

A line L = L(m, b) near L_0 will intersect each γ_i in a point $P_i = P_i(m, b)$. Let $X_i = X_i(m, b)$ be the Oth coordinate of P_i . We can now state the main result.

THEOREM. There exists an algebraic hypersurface γ of degree d containing each γ_i , $i = 1, \ldots, d$, if and only if

$$\sum_{i} \left(\frac{\partial^2 X_i}{\partial b_k} \partial b_1 \right) = 0,$$

for all k, 1 = 1, ..., n, the summation running over i = 1, ..., d.

Results of this kind have been known earlier. In fact, the theorem above is just the main theorem of the author's dissertation [W], restated in terms of the specific choice of coordinates given above. However, the proof given below is completely different from the proof in [W]. In particular, the present proof is shorter and less computational.

In addition, the theory above generalizes to arbitrary dimensions and degrees a theorem due to Lie [L] and Scheffers [S] for four curves in the plane (d = 4, n = 1). The method of proof is essentially the same, only recast in a different coordinate system. We believe Scheffers could also have provided a proof of the present theorem.

Necessity. Suppose there exists an algebraic hypersurface γ of degree d, which contains each γ_i , and which satisfies the degree d polynomial equation

$$p(x_0,\ldots,x_n)=0.$$

Received July 6, 1983.