PATH INTEGRAL FOR A HYPERBOLIC SYSTEM OF THE FIRST ORDER

TAKASHI ICHINOSE

Introduction. The present paper concerns a path integral approach to the $N \times N$ hyperbolic system of the first order

$$\frac{\partial}{\partial t}\psi(t,x) = \left[\sum_{l=1}^{d} P_l\left(\frac{\partial}{\partial x_l} - iA_l(t,x)\right) + iQ + iV(t,x)\right]\psi(t,x)$$
$$0 < t < T, \quad x \in \mathbb{R}^d, \quad (0.1)$$

where $0 < T \le \infty$, and the P_l , $1 \le l \le d$, and Q are constant $N \times N$ -matrices, and the $A_l(t,x)$, $1 \le l \le d$, and V(t,x) are real-valued functions. It is assumed not only that the P_l have only real eigenvalues but also that they are simultaneously diagonalizable. This assumption is satisfied for instance by the Dirac equation in two space-time dimensions.

The physical idea of path integral was introduced by Feynman ([11], [12]) to make an intuitive representation of the solution of the Schrödinger equation. With the Wiener measure on the Brownian path space Kac [15] has given a rigorous realization of Feynman's idea for the pure-imaginary-time Schrödinger equation, i.e., the heat equation to establish what is now called the Feynman-Kac formula.

The aim of the present paper is to construct, for each fixed $(t, x) \in [0, t) \times \mathbb{R}^d$, an $N \times N$ -matrix-valued countably additive path space measure $v_{t,x}^0$ on the Banach space $C([0, t]; \mathbb{R}^d)$ of the continuous paths $X : [0, t] \to \mathbb{R}^d$ and to establish for the solution $\psi(t, x)$ of the Cauchy problem for the hyperbolic system (0.1) with initial datum $\psi(0, x) = g(x)$ the path integral formula

$$\psi(t,x) = \int d\nu_{t,x}^{0}(X) \exp\left[i\left(\int_{0}^{t} A\left(s, X(s)\right) dX(s) + \int_{0}^{t} V(s, X(s)) ds\right)\right] g(X(0)).$$
(0.2)

The support of $v_{t,x}^0$ is on the space of the Lipschitz continuous paths $X:[0,t] \to \mathbb{R}^d$ satisfying X(t) = x and that

for each a, b with
$$0 \le a < b \le t$$
 and each unit vector ω in \mathbb{R}^{d} ,
 $c_{-}(\omega)(b-a) \le (X(b) - X(a))\omega \le c_{+}(\omega)(b-a).$ (0.3)

Received December 2, 1982. Partially supported by Grant-in-Aid for Scientific Research No. 58540050, Ministry of Education, Japan.