HILBERT TRANSFORMS FOR CONVEX CURVES

ALEXANDER NAGEL,¹ JAMES VANCE, STEPHEN WAINGER,¹ and DAVID WEINBERG

§0. Introduction. Let $\Gamma: \mathbb{R} \to \mathbb{R}^n$ be a curve in \mathbb{R}^n , $n \ge 2$. To Γ we associate the Hilbert transform operators \overline{H} and H given by the principal value integrals

$$\overline{H}f(x) = \int_{-1}^{1} f(x - \Gamma(t)) \frac{dt}{t} \qquad (x \in \mathbf{R}^n)$$
(1)

$$Hf(x) = \int_{-\infty}^{\infty} f(x - \Gamma(t)) \frac{dt}{t} \qquad (x \in \mathbf{R}^n).$$
⁽²⁾

(Here and throughout, f will denote an arbitrary function in an appropriate class; say, $f \in C_c^{\infty}(\mathbb{R}^n)$.) A great deal of attention has been given to the problem of determining for which curves Γ and for what values of p we have the L^p bounds

$$\|\overline{H}f\|_{p} \leq A_{p}\|f\|_{p} \tag{3}$$

$$\|Hf\|_{p} \leq A_{p}\|f\|_{p} \tag{4}$$

for constants A_p depending only on p and Γ . (Part I of [SW2] contains a useful survey of these and other problems, and an extensive list of references. More recent results can be found in [Ne], [NSW], and [We].)

It is known that if Γ has a sufficient amount of curvature, then (3) holds for $1 . (For example, if the derivatives of <math>\Gamma(t)$ elevated at t = 0 span \mathbb{R}^n , then (3) holds for 1 . See [NRW] and [SW2].)

On the other hand, it was shown in [NW] that in the case of plane curves (i.e., n = 2), (3) may fail even when p = 2 and Γ is of the form $\Gamma(t) = (t, \gamma(t))$, with $\gamma(t)$ a smooth, odd curve which for t > 0 is positive, increasing, and convex. (However, it was demonstrated there that if also $\gamma''(t)$ is increasing for t > 0, then $\|Hf\|_p \leq A_p \|f\|_p$ for $\frac{5}{3} .)$

The main object of this paper is to give a simple necessary and sufficient condition on curves of the above type so that $||Hf||_2 \leq A ||f||_2$ and $||\overline{H}f||_2 \leq A ||f||_2$. The condition is expressed in terms of an auxilliary function

$$h(t) = t\gamma'(t) - \gamma(t).$$
(5)

¹Received September 25, 1982. Supported in part by an NSF grant at the University of Wisconsin.