CONTINUOUS LINEAR DIVISION AND EXTENSION OF $\mathscr{C} \cong$ FUNCTIONS

EDWARD BIERSTONE¹ AND GERALD W. SCHWARZ²

Contents

0.	Introduction	•					. 233
1.	Preliminaries						. 236
2.	Modules generated by analytic functions						. 238
3.	Subanalytic morphisms						. 239
	Semicoherent sheaves						
5.	Nash subanalytic and semicoherent sets						. 251
6.	Some functional analysis						. 256
	The extension property						
8.	Lifting and splitting theorems					•	. 260
	Differentiable invariants						
Ap	bendix A. Rectilinearization of subanalytic sets						. 263
App	pendix B. Tidten's theorem						. 269
	erences						

0. Introduction. There are two main aspects of this paper: division theorems generalizing Malgrange's results on ideals generated by analytic functions; and the existence of continuous linear solutions to several problems, including the division problems and problems of extending \mathscr{C}^{∞} functions defined on closed subanalytic sets.

Let Ω denote a real analytic manifold. (All manifolds are assumed countable at infinity.) Let $\mathscr{C}^{\infty}(\Omega)$ (respectively $\mathscr{O}(\Omega)$) denote the algebra of \mathscr{C}^{∞} (respectively real analytic) functions on Ω . Let $Y \subset X$ be closed subsets of Ω . Denote by $\mathscr{C}^{\infty}(\Omega, X)$ (respectively $\mathscr{E}(\Omega, X)$) the ideal in $\mathscr{C}^{\infty}(\Omega)$ of functions which vanish on X (respectively, which vanish on X together with all their partial derivatives). Put $\mathscr{C}^{\infty}(X, Y) = \mathscr{C}^{\infty}(\Omega, Y)/\mathscr{C}^{\infty}(\Omega, X)$ and $\mathscr{E}(X, Y) = \mathscr{E}(\Omega, Y)/\mathscr{E}(\Omega, X)$. Write $\mathscr{C}^{\infty}(X) = \mathscr{C}^{\infty}(X, \emptyset)$ and $\mathscr{E}(X) = \mathscr{E}(X, \emptyset)$. Both $\mathscr{C}^{\infty}(X, Y)$ and $\mathscr{E}(X, Y)$ are quotients of closed subspaces of the Fréchet space $C^{\infty}(\Omega) = \mathscr{E}(\Omega)$; hence they have natural Fréchet space structures.

Received January 27, 1982.

¹Research partially supported by NSERC grant A9070.

²Research partially supported by NSF grant MCS79-02937.