A LOCALLY FREE KLEINIAN GROUP

BERNARD MASKIT

The purpose of this note is to exhibit a Kleinian group which is locally free but not free. Specifically, we will find a discrete group of Möbius transformations G with the following properties.

1. G acts discontinuously at some point of the extended complex plane \hat{C} .

2. G is locally free.

3. G is perfect (i.e. G = [G, G], its commutator subgroup).

4. There is an invariant component Δ of the set of discontinuity Ω of G.

5. Δ/G is (conformally equivalent to) a plane domain.

6. G contains no parabolic elements.

Every group of Möbius transformations operates on hyperbolic 3-space H. Our construction gives us a hyperbolic 3-manifold M = H/G with the following properties.

1'. M is topologically equivalent to the interior of a (non-compact) 3-manifold \overline{M} with boundary.

2'. $\pi_1(M)$ is locally free.

3'. $H_1(M) = 0$.

4'. There is a component $S \subset \partial M$ so that the inclusion $i: S \to \overline{M}$ induces a surjection $i_*: \pi_1(S) \to \pi_1(\overline{M})$.

5'. S is topologically equivalent to a plane domain.

6'. Every free homotopy class of loops in M contains a shortest element.

We remark that it is not clear under which conditions the invariant component is all of Ω ; i.e., $S = \partial M$.

§1. Construction of a plane domain. The easiest way to think of this plane domain is as follows. Start with a finite cylinder D^1 . Attach a 3-holed sphere to each boundary; this yields a 4-holed sphere D^2 . Attach a 3-holed sphere to each of these four holes; this yields an 8-holed sphere D^3 . We continue in this manner to obtain $D = \bigcup D^n$, where $D^{n+1} \supset D^n$, D^n has 2^n boundary curves, and $D^{n+1} - D^n$ is the disjoint union of 2^{n-1} 3-holed spheres.

One easily sees that D is topologically equivalent to the complement of a Cantor set.

We choose a complex structure on D so that D is represented by a Fuchsian group of the first kind (see Keen [1] for the construction of such a group). In

Received November 18, 1981. Revision received July 7, 1982. Research supported in part by NSF Grant #MCS 8102621.