A LOCALLY FREE KLEINIAN GROUP

BERNARD MASKIT

The purpose of this note is to exhibit a Kleinian group which is locally free but not free. Specifically, we will find a discrete group of Möbius transformations G with the following properties.

1. G acts discontinuously at some point of the extended complex plane $\hat{\mathrm{C}}$.
2. G is locally free.
3. G is perfect (i.e. $G=[G, G]$, its commutator subgroup).
4. There is an invariant component Δ of the set of discontinuity Ω of G.
5. Δ / G is (conformally equivalent to) a plane domain.
6. G contains no parabolic elements.

Every group of Möbius transformations operates on hyperbolic 3-space H. Our construction gives us a hyperbolic 3 -manifold $M=H / G$ with the following properties.
$1^{\prime} . M$ is topologically equivalent to the interior of a (non-compact) 3-manifold \bar{M} with boundary.
$2^{\prime} . \pi_{1}(M)$ is locally free.
$3^{\prime} . H_{1}(M)=0$.
4^{\prime}. There is a component $S \subset \partial M$ so that the inclusion $i: S \rightarrow \bar{M}$ induces a surjection $i_{*}: \pi_{1}(S) \rightarrow \pi_{1}(\bar{M})$.
$5^{\prime} . S$ is topologically equivalent to a plane domain.
6^{\prime}. Every free homotopy class of loops in M contains a shortest element.
We remark that it is not clear under which conditions the invariant component is all of Ω; i.e., $S=\partial M$.
§1. Construction of a plane domain. The easiest way to think of this plane domain is as follows. Start with a finite cylinder D^{1}. Attach a 3-holed sphere to each boundary; this yields a 4 -holed sphere D^{2}. Attach a 3-holed sphere to each of these four holes; this yields an 8 -holed sphere D^{3}. We continue in this manner to obtain $D=\cup D^{n}$, where $D^{n+1} \supset D^{n}, D^{n}$ has 2^{n} boundary curves, and $D^{n+1}-D^{n}$ is the disjoint union of $2^{n-1} 3$-holed spheres.

One easily sees that D is topologically equivalent to the complement of a Cantor set.

We choose a complex structure on D so that D is represented by a Fuchsian group of the first kind (see Keen [1] for the construction of such a group). In

[^0]
[^0]: Received November 18, 1981. Revision received July 7, 1982. Research supported in part by NSF Grant \#MCS 8102621.

