
Vol. 50, No. DUKE MATHEMATICAL JOURNAL (C) March 1983

TANGENT CONES TO TWO-DIMENSIONAL
AREA-MINIMIZING INTEGRAL CURRENTS

ARE UNIQUE

BRIAN WHITE

Introduction. Every rectifiable k-cycle in FI bounds an area minimizing
surface (integral current), which is known to be regular almost everywhere [A].
Examples show that the surface may have one or more singularities, but very
little is known about the structure of such a singularity other than the existence
of tangent cones to the surface at the singularity. That is, if T is an
area-minimizing integral current with 0 support ( T) and if r 0+, then the
sequence I(ri-)#(T I._ B(0,ri)) (obtained by restricting T to the ball of radius r
and dilating by ri-) contains a subsequence which converges to an area
minimizing cone C. Perhaps the most basic open question about singularities in
area minimizing surfaces is whether such a cone must be unique. Or is it possible
for a different subsequence to converge to another cone C’? That could happen
only if the surface were to spin or 6scillate between two or more cones as it
approached 0; since such spinning would appear to be wasteful of area, it seems
unlikely. However, uniqueness of tangent cone has been proved in only a few
situations: for 1-dimensional stationary varifolds [AA1], for two-dimensional
area minimizing currents mod3 and soap-film-like varifolds in F [T1, T2], for
area minimizing hypersurfaces mod4 in F (n < 7) [W], and for arbitrary
minimal surfaces at isolated singularities, provided at least one of the tangent
cones satisfies an additional hypothesis [AA2]. (Unfortunately the hypothesis
does not hold in all cases of interest [B].)

In this paper we prove uniqueness of tangent cones for two dimensional
integral currents in FIn. Using an idea of Reifenberg [R], we reduce the problem
to an "epiperimetric" inequality. The epiperimetric inequality is proved by
constructing a comparison surface from the graph of a multiple-valued harmonic
function, the area of which we estimate in terms of the Fourier series of its
boundary values.
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1. Preliminaries. In addition to the standard notation of geometric measure
theory [F] we use the following.
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