THE CANONICAL RING OF A VARIETY OF GENERAL TYPE

MARK L. GREEN

	Introduction	1087
§1.	Some Varieties Arising from Multi-linear Algebra	1090
§2.	A Vanishing Theorem for Koszul Cohomology	1098
§3.	Generators and Relations for the Canonical Ring of an n-fold of	
	General Type with $ K $ Base-point Free and dim $\varphi_K(x) = n$	1104
§4.	Examples for Algebraic Surfaces	1109
	Appendix: Mumford's Vanishing Theorem	1112

Introduction. Our object in this paper is to study the canonical ring

$$\bigoplus_{d=0}^{\infty} H^0(X, dK_X)$$

of a smooth n-fold X of general type, and in particular to learn in what degrees to expect generators and relations for this ring. In the case of curves, Noether's theorem [S] covers the question of generators and states that

- (1) The canonical ring of a curve X is always generated in degrees ≤ 3 .
- (2) If $g \ge 3$, the canonical ring of X is generated in degrees ≤ 2 .

(3) If X is nonhyperelliptic, the canonical ring of X is generated in degree 1.

The work of Enriques and Petri [S] takes care of the relations, stating:

(1) The relations in the canonical ring of a curve X are always generated in weights ≤ 4 .

(2) If $g \ge 4$, the relations in the canonical ring of X are generated in weights ≤ 3 .

(3) If X is not hyperelliptic, trigonal, or a plane quintic, the relations in the canonical ring of X are generated in degree 2.

There is a beautiful generalization of the work of Enriques-Petri by Arbarello and Sernesi [A-S]. They prove that for a smooth *n*-fold X of general type, under the assumptions

(1) the canonical ring of X is generated in degree 1;

Received July 3, 1982. Partially supported by N.S.F. Grant MCS79-01062.