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ON THE L-FUNCTIONS OF CANONICAL HECKE
CHARACTERS OF IMAGINARY QUADRATIC

FIELDS, II

HUGH L. MONTGOMERY AND DAVID E. ROHRLICH

The purpose of this note is to resolve a question left open in the second-named
author’s papers [2] and [3]. The main theorem of [3] was concerned with a special
class of Hecke characters of imaginary quadratic fields, referred to in that paper
as "canonical" Hecke characters. The gist of the theorem was this: The
L-function of a canonical Hecke character vanishes at the center of the critical
strip if and only if it is forced to do so by its functional equation. However, this
statement was proved only up to a finite number of possible exceptions.
Furthermore, the method of proof gave no effective procedure for determining
whether such exceptions existed, because it depended on Siegel’s lower bound for
the class number of an imaginary quadratic field. In the present paper we shall
circumvent this problem by replacing the use of the Siegel and Burgess estimates
with a positivity argument.
To state the result precisely, let K be an imaginary quadratic field with

discriminant D < -4 and ring of integers (9, and consider a Hecke character X
of K with conductor , satisfying

x()

for a modL We assume that X is equivafiant with respect to complex
conjugation, that the values of X on principal ideals lie in K, and that is
divisible only by primes of K which divide D. Let W(X) be the root number in
the functional equation of L(s, X).

THEOREM. L(1, X) 0 if and only if W(X) 1.

For facts about Hecke characters which are used in the proof, as well as for
applications to elliptic curves with complex multiplication, the reader is referred
to [1], [4], [5], and [6]. Here we recall just two well-known facts about Eisenstein
series and theta series which we shall need:

(i) For z in the upper half plane, put

G(z,s) , (-u--nD)(mD + n)lmDz+ n1-2s (Res > 3/2),
mZ
n>0
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